我想知道是否有人可以帮助我解答有关R包ellipsoidhull
中函数cluster
的一些问题。我用它来找到一个包含一系列2d点的最小椭圆。 e.g。
library(cluster)
d <- matrix(c(1,2,3,1,3,2),ncol=2)
e <- ellipsoidhull(d)
该函数计算椭圆OK,返回包含椭圆中心和协方差矩阵的结构。
summary(e)
## 'ellipsoid' in 2 dimensions:
## center = ( 2 2 ); squared ave.radius d^2 = 2
## and shape matrix =
## [,1] [,2]
## [1,] 0.66667 0.33333
## [2,] 0.33333 0.66667
## hence, area = 3.6276
问题
a)如何使用此数据检查给定点是否属于椭圆?
b)如何使用此数据计算从给定点到椭圆的距离?
答案 0 :(得分:1)
我们可以尝试以下方法:
library(cluster)
d <- matrix(c(1,2,3,1,3,2),ncol=2)
e <- ellipsoidhull(d)
eg <- eigen(e$cov)
axes <- sqrt(eg$values)
angle <- atan(eg$vectors[1,1]/eg$vectors[2,1]) # angle of major axis with x axis
# check if the point (xp, yp) belongs to the ellipse with parameters a,b,... with tolerance eps
belongs.to <- function (xp, yp, a, b, x0, y0, alpha, eps=1e-3) {
return(abs((cos(alpha)*(xp-x0)+sin(alpha)*(yp-y0))^2/a^2+(sin(alpha)*(xp-x0)-cos(alpha)*(yp-y0))^2/b^2 - 1) <= eps)
}
# check if the point (xp, yp) is inside the ellipse with parameters a,b,...
is.inside <- function (xp, yp, a, b, x0, y0, alpha) {
return((cos(alpha)*(xp-x0)+sin(alpha)*(yp-y0))^2/a^2+(sin(alpha)*(xp-x0)-cos(alpha)*(yp-y0))^2/b^2 <= 1)
}
# plot ellipse
plot(e$loc, xlim=c(0,4), ylim=c(0,4), main = "ellipsoidhull", xlab='x', ylab='y')
lines(predict(e), col="blue")
points(rbind(e$loc), col = "red", cex = 3, pch = 13)
x0 <- e$loc[1] # centroid locations
y0 <- e$loc[2]
a <- sqrt(e$d2) * axes[1] # major axis length
b <- sqrt(e$d2) * axes[2] # minor axis length
alpha <- angle
xp <- 3
yp <- 2.9
is.inside(xp, yp, a, b, x0, y0, alpha)
# [1] TRUE
points(xp, yp, pch=19, col='green')
xp <- 3
yp <- 3.1
is.inside(xp, yp, a, b, x0, y0, alpha)
# [1] FALSE
points(xp, yp, pch=19, col='blue')
xp <- 3
yp <- 3
belongs.to(xp, yp, a, b, x0, y0, alpha)
# [1] TRUE
points(xp, yp, pch=19, col='pink')
# distance of a point from the center of the ellipse
sqrt((xp-x0)^2+(yp-y0)^2)