我正在尝试设计类似于camscanner的应用。为此,我必须拍摄一张图片然后找到该文件。我从这里描述的代码开始 - http://opencvpython.blogspot.in/2012/06/sudoku-solver-part-2.html
我发现轮廓和最大面积的矩形轮廓应该是所需的文件。对于每个轮廓,我发现一个近似封闭的PolyDP。在所有大小为4的polyDP中,具有最大面积的polyDP应该是所需的文档。但是,这种方法不起作用。
我尝试用最大面积打印轮廓,这导致了这个(Contour inside letter' C')
代码:
img = cv2.imread('bounce.jpeg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def biggestRectangle(contours):
biggest = None
max_area = 0
indexReturn = -1
for index in range(len(contours)):
i = contours[index]
area = cv2.contourArea(i)
if area > 100:
peri = cv2.arcLength(i,True)
approx = cv2.approxPolyDP(i,0.1*peri,True)
if area > max_area: #and len(approx)==4:
biggest = approx
max_area = area
indexReturn = index
return indexReturn
indexReturn = biggestRectangle(contours)
cv2.imwrite('hola.png',cv2.drawContours(img, contours, indexReturn, (0,255,0)))
这出了什么问题?有没有其他方法可以捕捉到这张照片中的文件?
答案 0 :(得分:6)
试试这个: output image
import cv2
import numpy as np
img = cv2.imread('bounce.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
invGamma = 1.0 / 0.3
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
gray = cv2.LUT(gray, table)
ret,thresh1 = cv2.threshold(gray,80,255,cv2.THRESH_BINARY)
#thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
_, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def biggestRectangle(contours):
biggest = None
max_area = 0
indexReturn = -1
for index in range(len(contours)):
i = contours[index]
area = cv2.contourArea(i)
if area > 100:
peri = cv2.arcLength(i,True)
approx = cv2.approxPolyDP(i,0.1*peri,True)
if area > max_area: #and len(approx)==4:
biggest = approx
max_area = area
indexReturn = index
return indexReturn
indexReturn = biggestRectangle(contours)
hull = cv2.convexHull(contours[indexReturn])
cv2.imwrite('hola.png',cv2.drawContours(img, [hull], 0, (0,255,0),3))
#cv2.imwrite('hola.png',thresh1)
答案 1 :(得分:3)
我会这样做:
像blur / canny
使用hough line transform (open cv doc)从图像中提取所有线条。
使用4条最强的行
尝试使用四行
现在我没有安装OpenCV,所以我不能尝试这种方法,但也许它会引导你进入正确的方向。