我需要对Python列表中的每个n
元素进行平均,在此示例中为n = 3
:
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
这样输出列表就是:
list2 = [2, 2, 2, 5, 5, 5, 8, 8, 8]
答案 0 :(得分:2)
您可以在列表推导中计算[2,5,8]
列表,如下所示:
list1 = [1,2,3,4,5,6,7,8,9]
n = 3
list2 = [sum(list1[i:i+n])//n for i in range(0,len(list1),n)]
然后像你要求的那样把它放回list1
(保留大小):
for i in range(0,len(list1)):
list1[i] = list2[i//n]
或列表理解:
list1 = [list2[i//n] for i in range(len(list1))]
最终编辑:找到一个很好的oneliner来总结:
import itertools
list1 = list(itertools.chain.from_iterable([i]*n for i in [sum(list1[i:i+n])//n for i in range(0,len(list1),n)]))
答案 1 :(得分:1)
从@Jean-François Fabre's answer借用一点但使用statistics.mean
(avaiable for python 3.4+):
>>> from statistics import mean
>>> from itertools import chain
>>> lst = [1,2,3,4,5,6,7,8,9]
>>> n = 3
>>> list(chain.from_iterable([mean(lst[i:i+n])]*n for i in range(0,len(lst),n)))
[2, 2, 2, 5, 5, 5, 8, 8, 8]
答案 2 :(得分:1)
>>> n = 3
>>> list1 = [1,2,3,4,5,6,7,8,9]
>>> [avg for avg in [sum(list1[i:i+n])//n for i in range(0,len(list1),n)] for j in range(n)]
[2, 2, 2, 5, 5, 5, 8, 8, 8]
不需要itertools: - )
说明:将作业分成两步;这有帮助吗?哪个部分还不清楚?
>>> n = 3
>>> list1 = [1,2,3,4,5,6,7,8,9]
>>> averages = [sum(list1[i:i+n])//n for i in range(0,len(list1),n)]
>>> print("averages: ", averages)
averages: [2, 5, 8]
>>> list2 = [avg for avg in averages for j in range(n)]
>>> print("list2: ", list2)
list2: [2, 2, 2, 5, 5, 5, 8, 8, 8]
更新:执行no-itertools one-liner的另一种方式:
>>> list2 = sum(([a]*n for a in [sum(list1[i:i+n])//n for i in range(0,len(list1),n)]), [])
[2, 2, 2, 5, 5, 5, 8, 8, 8]
说明:我们像以前一样计算平均值。然后我们像这样传播它们:
>>> averages = [2, 5, 8]
>>> list2 = sum(([a]*n for a in averages), []) ### see note [1] below
>>> list2
[2, 2, 2, 5, 5, 5, 8, 8, 8]
可以进一步展开:
>>> all_items = list([a]*n for a in averages)
>>> all_items
[[2, 2, 2], [5, 5, 5], [8, 8, 8]]
>>> sum(all_items, [])
[2, 2, 2, 5, 5, 5, 8, 8, 8]
>>>
注意[1]:sum
的第一个arg首先看起来包含在不必要的圆括号中......如果您这么认为,请尝试在没有它们的情况下运行它,看看会发生什么。
答案 3 :(得分:1)
我知道这篇文章很旧,但是如果有人正在寻找一个全数字的解决方案,只要该数组的长度可以被n整除,这两行就可以工作:
avg = np.mean(array1.reshape(-1, n), axis=1)
array2 = np.repeat(avg, n)
如果数组的长度不能被n整除,则可以对其余元素求平均值。一个执行此操作的函数可能看起来像这样:
import numpy as np
def average(arr, n):
remainder = len(arr) % n
if remainder == 0:
avg = np.mean(arr.reshape(-1, n), axis=1)
avg = np.repeat(avg, n)
return avg
else:
avg_head = np.mean(arr[:-remainder].reshape(-1, n), axis=1)
avg_tail = np.mean(arr[-remainder:])
avg_head = np.repeat(avg_head, n)
avg_tail = np.repeat(avg_tail, remainder)
return np.append(avg_head, avg_tail)
n = 3,n = 4和n = 5的示例:
>>> array1 = np.arange(1, 10)
>>> array1
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> average(array1, 3)
array([2., 2., 2., 5., 5., 5., 8., 8., 8.])
>>> average(array1, 4)
array([2.5 2.5 2.5 2.5 6.5 6.5 6.5 6.5 9. ])
>>> average(array1, 5)
array([3. 3. 3. 3. 3. 7.5 7.5 7.5 7.5])
答案 4 :(得分:0)
你可以在numpy中使用mean:
import numpy as np
list1 = [1,2,3,4,5,6,7,8,9]
np.mean(np.array(list1).reshape(-1, 3), axis=1)