我有一个数据框如下。
ID Word Synonyms
------------------------
1 drove drive
2 office downtown
3 everyday daily
4 day daily
5 work downtown
我正在阅读一个句子,并希望用上面定义的同义词替换该句子中的单词。这是我的代码:
import nltk
import pandas as pd
import string
sdf = pd.read_excel('C:\synonyms.xlsx')
sd = sdf.apply(lambda x: x.astype(str).str.lower())
words = 'i drove to office everyday in my car'
#######
def tokenize(text):
text = ''.join([ch for ch in text if ch not in string.punctuation])
tokens = nltk.word_tokenize(text)
synonym = synonyms(tokens)
return synonym
def synonyms(words):
for word in words:
if(sd[sd['Word'] == word].index.tolist()):
idx = sd[sd['Word'] == word].index.tolist()
word = sd.loc[idx]['Synonyms'].item()
else:
word
return word
print(tokenize(words))
上面的代码标记了输入句子。我想实现以下输出:
:i drove to office everyday in my car
Out :i drive to downtown daily in my car
但我得到的输出是
Out :car
如果我跳过synonyms
函数,那么我的输出没有问题,并且被分成单个单词。我试图理解我在synonyms
函数中做错了什么。另外,请告知是否有更好的解决方案来解决这个问题。
答案 0 :(得分:1)
我会利用Pandas / NumPy索引。由于您的同义词映射是多对一的,因此您可以使用Word
列重新编制索引。
sd = sd.applymap(str.strip).applymap(str.lower).set_index('Word').Synonyms
print(sd)
Word
drove drive
office downtown
everyday daily
day daily
Name: Synonyms, dtype: object
然后,您可以轻松地将令牌列表与其各自的同义词对齐。
words = nltk.word_tokenize(u'i drove to office everyday in my car')
sentence = sd[words].reset_index()
print(sentence)
Word Synonyms
0 i NaN
1 drove drive
2 to NaN
3 office downtown
4 everyday daily
5 in NaN
6 my NaN
7 car NaN
现在,仍然需要使用Synonyms
中的令牌,然后再回到Word
。这可以通过
sentence = sentence.Synonyms.fillna(sentence.Word)
print(sentence.values)
[u'i' 'drive' u'to' 'downtown' 'daily' u'in' u'my' u'car']
答案 1 :(得分:0)
import re
import pandas as pd
sdf = pd.read_excel('C:\synonyms.xlsx')
rep = dict(zip(sdf.Word, sdf.Synonyms)) #convert into dictionary
words = "i drove to office everyday in my car"
rep = dict((re.escape(k), v) for k, v in rep.iteritems())
pattern = re.compile("|".join(rep.keys()))
rep = pattern.sub(lambda m: rep[re.escape(m.group(0))], words)
print rep
输出
i drive to downtown daily in my car