使用Spark Scala进行透视后,按名称选择具有多个聚合列的列

时间:2017-01-23 00:39:00

标签: scala apache-spark pivot aggregate-functions spark-dataframe

我试图在Scala Spark 2.0.1中的一个数据透视后聚合多个列:

scala> val df = List((1, 2, 3, None), (1, 3, 4, Some(1))).toDF("a", "b", "c", "d")
df: org.apache.spark.sql.DataFrame = [a: int, b: int ... 2 more fields]

scala> df.show
+---+---+---+----+
|  a|  b|  c|   d|
+---+---+---+----+
|  1|  2|  3|null|
|  1|  3|  4|   1|
+---+---+---+----+

scala> val pivoted = df.groupBy("a").pivot("b").agg(max("c"), max("d"))
pivoted: org.apache.spark.sql.DataFrame = [a: int, 2_max(`c`): int ... 3 more fields]

scala> pivoted.show
+---+----------+----------+----------+----------+
|  a|2_max(`c`)|2_max(`d`)|3_max(`c`)|3_max(`d`)|
+---+----------+----------+----------+----------+
|  1|         3|      null|         4|         1|
+---+----------+----------+----------+----------+

到目前为止,我无法选择或重命名这些列:

scala> pivoted.select("3_max(`d`)")
org.apache.spark.sql.AnalysisException: syntax error in attribute name: 3_max(`d`);

scala> pivoted.select("`3_max(`d`)`")
org.apache.spark.sql.AnalysisException: syntax error in attribute name: `3_max(`d`)`;

scala> pivoted.select("`3_max(d)`")
org.apache.spark.sql.AnalysisException: cannot resolve '`3_max(d)`' given input columns: [2_max(`c`), 3_max(`d`), a, 2_max(`d`), 3_max(`c`)];

这里必须有一个简单的伎俩,任何想法?感谢。

1 个答案:

答案 0 :(得分:1)

似乎是一个错误,后面的滴答声引起了问题。这里的一个解决方法是从列名中删除后面的刻度:

val pivotedNewName = pivoted.columns.foldLeft(pivoted)((df, col) => 
                             df.withColumnRenamed(col, col.replace("`", "")))

现在您可以按正常名称选择列名:

pivotedNewName.select("2_max(c)").show
+--------+
|2_max(c)|
+--------+
|       3|
+--------+