我试图实现一个Akka Stream,它从视频文件中读取帧并应用SVM分类器以检测每个帧上的对象。检测可以并行运行,因为视频帧的顺序无关紧要。我的想法是创建一个遵循Akka Streams Cookbook(Balancing jobs to a fixed pool of workers)的图表,其中有两个标记为.async
的检测阶段。
它在一定程度上如预期的那样工作,但我注意到我的系统的内存压力(仅8 GB可用)显着增加,并且在图表之外显着减慢了系统的速度。将此与使用.mapAsync
(Akka Docs)的不同方法进行比较,甚至将三个角色集成到执行对象检测的流中,内存压力显着降低。
我错过了什么?为什么并行运行两个阶段会增加内存压力,而三个并行运行的actor似乎工作正常?
补充说明:我使用OpenCV阅读视频文件。由于4K分辨率,Mat
类型的每个视频帧大约为26.5 MB。
与.async
并行运行两个阶段会显着增加内存压力
implicit val materializer = ActorMaterializer(
ActorMaterializerSettings(actorSystem)
.withInputBuffer(initialSize = 1, maxSize = 1)
.withOutputBurstLimit(1)
.withSyncProcessingLimit(2)
)
val greyscaleConversion: Flow[Frame, Frame, NotUsed] =
Flow[Frame].map { el => Frame(el.videoPos, FrameTransformation.transformToGreyscale(el.frame)) }
val objectDetection: Flow[Frame, DetectedObjectPos, NotUsed] =
Flow.fromGraph(GraphDSL.create() { implicit builder =>
import GraphDSL.Implicits._
val numberOfDetectors = 2
val frameBalance: UniformFanOutShape[Frame, Frame] = builder.add(Balance[Frame](numberOfDetectors, waitForAllDownstreams = true))
val detectionMerge: UniformFanInShape[DetectedObjectPos, DetectedObjectPos] = builder.add(Merge[DetectedObjectPos](numberOfDetectors))
for (i <- 0 until numberOfDetectors) {
val detectionFlow: Flow[Frame, DetectedObjectPos, NotUsed] = Flow[Frame].map { greyFrame =>
val classifier = new CascadeClassifier()
classifier.load("classifier.xml")
val detectedObjects: MatOfRect = new MatOfRect()
classifier.detectMultiScale(greyFrame.frame, detectedObjects, 1.08, 5, 0 | Objdetect.CASCADE_SCALE_IMAGE, new Size(40, 20), new Size(100, 80))
DetectedObjectPos(greyFrame.videoPos, detectedObjects)
}
frameBalance.out(i) ~> detectionFlow.async ~> detectionMerge.in(i)
}
FlowShape(frameBalance.in, detectionMerge.out)
})
def createGraph(videoFile: Video): RunnableGraph[NotUsed] = {
Source.fromGraph(new VideoSource(videoFile))
.via(greyscaleConversion).async
.via(objectDetection)
.to(Sink.foreach(detectionDisplayActor !))
}
将演员与.mapAsync
整合,不会增加记忆压力
val greyscaleConversion: Flow[Frame, Frame, NotUsed] =
Flow[Frame].map { el => Frame(el.videoPos, FrameTransformation.transformToGreyscale(el.frame)) }
val detectionRouter: ActorRef =
actorSystem.actorOf(RandomPool(numberOfDetectors).props(Props[DetectionActor]), "detectionRouter")
val detectionFlow: Flow[Frame, DetectedObjectPos, NotUsed] =
Flow[Frame].mapAsyncUnordered(parallelism = 3)(el => (detectionRouter ? el).mapTo[DetectedObjectPos])
def createGraph(videoFile: Video): RunnableGraph[NotUsed] = {
Source.fromGraph(new VideoSource(videoFile))
.via(greyscaleConversion)
.via(detectionFlow)
.to(Sink.foreach(detectionDisplayActor !))
}