无法将1715UTC转换为local / gmt类型

时间:2017-01-19 09:04:22

标签: java date-formatting

我无法使用java将1715UTC转换为local / gmt类型 我被试了

  temptime= "1715UTC"                            
  SimpleDateFormat simpleDateFormat = new SimpleDateFormat(" HH:mm");
  simpleDateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));
  Date myDate = simpleDateFormat.parse(temptime);        
  time= Long.toString(myDate.getTime()); 

但是我得到了java.text.ParseException:Unparseable date:" 1715" 请帮我理清这个

1 个答案:

答案 0 :(得分:0)

您的格式错误。您的格式为rnn_size = 2 time_step_size = 23 batch_size = 1 rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size) state = rnn_cell.zero_state(batch_size, tf.float32) for i in range(len(x_data)): x = process_x(x_data[i])[:23] y = word[i][:23] x_split = tf.split(0, time_step_size, x) outputs, state = tf.nn.rnn(rnn_cell, x_split, state) prediction = tf.reshape(tf.concat(1, outputs), [-1, rnn_size]) real = tf.reshape(y, [-1]) ratio = tf.ones([time_step_size * batch_size]) loss = tf.nn.seq2seq.sequence_loss_by_example([prediction], [real], [ratio]) cost = tf.reduce_mean(loss)/batch_size train = tf.train.AdamOptimizer(0.01).minimize(cost) # h_loss = tf.summary.scalar('loss', loss) h_cost = tf.summary.scalar('cost', cost) merged = tf.summary.merge_all() with tf.Session() as sess: tf.global_variables_initializer().run() writer = tf.summary.FileWriter("../NLP_tensorboards/"+__file__.split('/')[-1], sess.graph) for step in range(10000): sess.run(train) summary = sess.run(merged) writer.add_summary(summary, step) result = sess.run(tf.arg_max(prediction, 1)) # print [t for t in result] == word[gap:] # print ''.join([char_rdic[t] for t in result]) # print result, word[gap:], x_data[gap:], x_data print result, [t for t in result] == y 而不是HHmm

以下是更正的代码

HH:mm

这是一个带有类似代码的ideone,以带有正确输出的字符串格式显示结果(17:15)。