parts_list = imp_parts_df['Parts'].tolist()
sub_week_list = ['2016-12-11', '2016-12-04', '2016-11-27', '2016-11-20', '2016-11-13']
i = 0
start = DT.datetime.now()
for p in parts_list:
for thisdate in sub_week_list:
thisweek_start = pd.to_datetime(thisdate, format='%Y-%m-%d') #'2016/12/11'
thisweek_end = thisweek_start + DT.timedelta(days=7) # add 7 days to the week date
val_shipped = len(shipment_df[(shipment_df['loc'] == 'USW1') & (shipment_df['part'] == str(p)) & (shipment_df['shipped_date'] >= thisweek_start) & (shipment_df['shipped_date'] < thisweek_end)])
print (DT.datetime.now() - start).total_seconds()
shipment_df有大约35000条记录
partlist有436个部分
sub_week_list中有5个日期
总体 438.13 秒来运行此代码
有没有更快的方法呢
答案 0 :(得分:0)
parts_list = imp_parts_df['Parts'].astype(str).tolist()
i = 0
start = DT.datetime.now()
for p in parts_list:
q = 'loc == "xxx" & part == @p & "2016-11-20" <= shipped_date < "2016-11-27"'
val_shipped = len(shipment_df.query(q))
print (DT.datetime.now() - start).total_seconds()