我的数据集如下所示。我正在尝试编写R代码来转换它。这是自我网络,意味着第一列有两个人列出了他们的连接(在A1,A2和A3列中)。然后在第5到第10列中,我在A1,A2和A3中的人之间存在相互关系:
d <- data.frame(matrix(c("Steph","Ellen","John","Jim","Sam","Tom","Sally","Jane","Sam","Jane","Sally","NA","John","Jim","NA","Jane","Sam","NA","NA","Tom"),2,10))
names(d)<-c("Ego","A1","A2","A3","A1Connection1","A1Connection2","A2Connection1","A2Connection2","A3Connection1","A3Connection2")
d
我的挑战是采用第2到第10列,使它们看起来像这样
ReshapedData<-data.frame(matrix(c("John","John","Sam","Sam","Sally","Sally","Jim","Jim","Tom","Tom","Jane","Jane",
"Sam","Sally","John","NA","Sam","NA","Jane","NA","Jim","Jane","NA","Tom"),12,2))
names(ReshapedData)<-c("Alter", "Alter_Alter")
ReshapedData
至少在这个阶段,我不需要自我的名字。关键是首先得到其他东西。到目前为止,我能想到的最好的事情是在每行中调换5-10列,然后使用rbind创建一个长列,然后使用A1,A2,A3中的变量列表创建一个长列。这必须是一些更简化的方法来管理它。
由于
的Bogdan
答案 0 :(得分:1)
使用melt()
包中的reshape
函数并匹配具有公共索引的项目:
d <- data.frame(matrix(c("Steph","Ellen","John","Jim","Sam","Tom","Sally","Jane","Sam","Jane","Sally","NA","John","Jim","NA","Jane","Sam","NA","NA","Tom"),2,10))
names(d)<-c("Ego","A1","A2","A3","A1Connection1","A1Connection2","A2Connection1","A2Connection2","A3Connection1","A3Connection2")
d
library(reshape)
a <- melt(d,id.vars=NULL,measure.vars = c("A1","A2","A3"))
a$match <- as.character(paste(a[,1],rep(1:2)))
b <- melt(d,id.vars=NULL,measure.vars = c(5:dim(df)[2]))
b$match <- as.character(paste(gsub(pattern = ".*A([0-9]+).*",replacement = "A\\1",x = b[,1]),
rep(1:2)))
df.final <- data.frame(Alter=a$value[match(b$match,a$match)], Alter_Alter=b$value)
index <- 1:dim(df.final)[1]
index <- matrix(1:dim(df.final)[1], nrow = dim(df.final)[1]/2,byrow = T)
df.final <- df.final[as.vector(index),]
df.final
Alter Alter_Alter
1 John Sam
3 John Sally
5 Sam John
7 Sam NA
9 Sally Sam
11 Sally NA
2 Jim Jane
4 Jim NA
6 Tom Jim
8 Tom Jane
10 Jane NA
12 Jane Tom
# Test
ReshapedData<-data.frame(matrix(c("John","John","Sam","Sam","Sally","Sally","Jim","Jim","Tom","Tom","Jane","Jane",
"Sam","Sally","John","NA","Sam","NA","Jane","NA","Jim","Jane","NA","Tom"),12,2))
names(ReshapedData)<-c("Alter", "Alter_Alter")
df.final==ReshapedData
Alter Alter_Alter
1 TRUE TRUE
3 TRUE TRUE
5 TRUE TRUE
7 TRUE TRUE
9 TRUE TRUE
11 TRUE TRUE
2 TRUE TRUE
4 TRUE TRUE
6 TRUE TRUE
8 TRUE TRUE
10 TRUE TRUE
12 TRUE TRUE