proc iml;
start f_prob(beta) global(one_m_one, pone_m_one);
p = nrow(one_m_one);
td = j(p,3,0.);
a = 1;
do i = 1 to p;
td[i,1] = exp((one_m_one[i,1])*(beta[1]) + (one_m_one[i,2])*(beta[2]) + (one_m_one[i,3])*(beta[3]) + (one_m_one[i,4])*(beta[4]) + (one_m_one[i,5])*(beta[5]) + (one_m_one[i,6])*(beta[6]) + (one_m_one[i,7])*(beta[7]) + (one_m_one[i,8])*(beta[8]) + (one_m_one[i,9])*(beta[9]) + (one_m_one[i,10])*(beta[10]));
do j = a to 11+a;
td[i,2] = td[i,2] + exp((pone_m_one[j,1])*(beta[1]) + (pone_m_one[j,2])*(beta[2]) + (pone_m_one[j,3])*(beta[3]) + (pone_m_one[j,4])*(beta[4]) + (pone_m_one[j,5])*(beta[5]) + (pone_m_one[j,6])*(beta[6]) + (pone_m_one[j,7])*(beta[7]) + (pone_m_one[j,8])*(beta[8]) + (pone_m_one[j,9])*(beta[9]) + (pone_m_one[j,10])*(beta[10]));
end;
a = a + 12;
end;
td[,3] = td[,1]/td[,2];
f = 1;
do i = 1 to p;
f = f*td[i,3];
end;
return(f);
finish f_prob;
/* Set up the constraints: sum(x)=0 */
/* x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 SIGN VALUE */
con = {. . . . . . . . . . . ., /* specify lower bounds */
. . . . . . . . . . . ., /* specify upper bounds */
1 1 1 1 1 1 1 1 1 1 0 0}; /* constraints */
beta0 = j(1,10,0);
optn = {1,4};
call nlpnra(rc, result, "f_prob", beta0, optn) blc=con;
嗨,我正在尝试优化其中包含10个参数的函数f,其中所有10个参数的约束总和为零。
任何人都可以建议我如何编写最后一部分的代码,以便我可以优化f并获得我想要的结果?提前谢谢。
答案 0 :(得分:0)
文档提供了an example of how to specify a linear constraint matrix。例如,使用3 x 12矩阵。
代码如下所示:
/* Set up the constraints: sum(x)=0 */
/* x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 SIGN VALUE */
con = {. . . . . . . . . . . ., /* specify lower bounds */
. . . . . . . . . . . ., /* specify upper bounds */
1 1 1 1 1 1 1 1 1 1 0 0}; /* constraints */
call nlpnra(rc, result, "f_prob", beta, optn) blc=con;
最后一行指定矩阵表达式c * x = 0的系数,其中c = {1 1 ... 1}包含第三行的系数。