我正在编写一个解决二次或三次方程的程序。问题是,我不知道我是否正确放置Math.toRadians
。
代码如下:
public double[] getRaices(double a,double b, double c, double d) throws ComplexException {
if (a==0){
double discriminante=Math.pow(c,2)+((-4)*b*d);
if(discriminante>=0){
this.Raices[0]=(c*(-1)+Math.sqrt(discriminante))/(2*b);
this.Raices[1]=(c*(-1)-Math.sqrt(discriminante))/(2*b);
}else{
throw new ComplexException("No hay solucion Real");
}
} else{
double f=((3*c/a)-(Math.pow(b,2)/Math.pow(a,2)))/3;
double g=((2*Math.pow(b,3)/Math.pow(a,3))-(9*b*c/Math.pow(a,2))+(27*d/a))/27;
double h=(Math.pow(g,2)/4)+(Math.pow(f,3)/27);
if(f+g+h==0){
Raices [0]=Math.cbrt(d/a)*(-1);
Raices [1]=Math.cbrt(d/a)*(-1);
Raices [2]=Math.cbrt(d/a)*(-1);
}else{
if(h<=0){
double i=Math.sqrt((Math.pow(g,2)/4)-h);
double j=Math.cbrt(i);
double k=Math.acos(Math.toRadians(-1*(g/2*i)));
System.out.println(" "+k+" ");
double l=j*(0-1);
double m=Math.toRadians(Math.cos(Math.toRadians(k/3)));
System.out.println(" "+m+" ");
double n=Math.sqrt(3)*Math.sin(Math.toRadians(k/3));
System.out.println(" "+n+" ");
double p=(b/(3*a)*(0-1));
Raices [0]=2*j*Math.cos(Math.toRadians(k/3))-(b/(3*a));
Raices [1]=(l*(m+n))+p;
Raices [2]=(l*(m-n))+p;
}else{
double r=((0-1)*(g/2))+Math.sqrt(h);
double s=Math.cbrt(r);
double t=((0-1)*(g/2))-Math.sqrt(h);
double u=Math.cbrt(t);
throw new ComplexException("2 de las raices son imaginarias pero una raiz es real: "+Math.floor(Raices [0]=(s+u)-(b/(3*a))));
}
}
}
return Raices;
}
但问题出在if (h<=0)
。
答案 0 :(得分:0)
我在网页上测试了您的代码并发现了一些错误。 首先是g / 2i,你写了g / 2 * i而不是g / 2 / i或(g /(2 * i)。并且几个Math.toRadians没必要(网页说计算是弧度,所以不需要转换)。
我添加了println以帮助遵循以下公式:
package test;
public class Cubic {
private double[] Raices = new double[3];
public static void main(String[] args) throws ComplexException {
double[] raices = new Cubic().getRaices(2, -4, -22, 24);
System.out.println(raices[0] + "," + raices[1] + "," + raices[2]);
}
public double[] getRaices(double a, double b, double c, double d) throws ComplexException {
if (a == 0) {
double discriminante = Math.pow(c, 2) + ((-4) * b * d);
if (discriminante >= 0) {
this.Raices[0] = (c * (-1) + Math.sqrt(discriminante)) / (2 * b);
this.Raices[1] = (c * (-1) - Math.sqrt(discriminante)) / (2 * b);
} else {
throw new ComplexException("No hay solucion Real");
}
} else {
double f = ((3 * c / a) - (Math.pow(b, 2) / Math.pow(a, 2))) / 3;
System.out.println("f=" + f);
double g = ((2 * Math.pow(b, 3) / Math.pow(a, 3)) - (9 * b * c / Math.pow(a, 2)) + (27 * d / a)) / 27;
System.out.println("g=" + g);
double h = (Math.pow(g, 2) / 4) + (Math.pow(f, 3) / 27);
System.out.println("h=" + h);
if (f + g + h == 0) {
Raices[0] = Math.cbrt(d / a) * (-1);
Raices[1] = Math.cbrt(d / a) * (-1);
Raices[2] = Math.cbrt(d / a) * (-1);
} else {
if (h <= 0) {
double i = Math.sqrt((Math.pow(g, 2) / 4) - h);
double j = Math.cbrt(i);
double k = Math.acos(-1 * (g / 2 / i));
System.out.println("k=" + k + " ");
double l = j * (0 - 1);
System.out.println("l=" + l + " ");
double m = Math.cos(k / 3);
System.out.println("m= " + m + " ");
double n = Math.sqrt(3) * Math.sin(k / 3);
System.out.println("n= " + n + " ");
double p = (b / (3 * a) * (0 - 1));
System.out.println("p= " + p + " ");
Raices[0] = 2 * j * Math.cos(k / 3) - (b / (3 * a));
Raices[1] = (l * (m + n)) + p;
Raices[2] = (l * (m - n)) + p;
} else {
double r = ((0 - 1) * (g / 2)) + Math.sqrt(h);
double s = Math.cbrt(r);
double t = ((0 - 1) * (g / 2)) - Math.sqrt(h);
double u = Math.cbrt(t);
throw new ComplexException(
"2 de las raices son imaginarias pero una raiz es real: " + Math.floor(Raices[0] = (s + u) - (b / (3 * a))));
}
}
}
return Raices;
}
}