我编写了以下人口演化代码(遗传算法实现):
Individual.java
import java.util.Random;
public class Individual {
public static int SIZE = 500;
private int[] genes = new int[SIZE];
private double fitnessValue = 0.0;
// Getters and Setters
public void setGene(int index,int gene){
this.genes[index] = gene;
}
public int getGene(int index){
return this.genes[index];
}
public void setFitnessValue(double fitness){
this.fitnessValue = fitness;
}
public double getFitnessValue(){
return this.fitnessValue;
}
//Function to generate a new individual with random set of genes
public void generateIndividual(){
Random rand = new Random();
for(int i=0;i<SIZE;i++){
this.setGene(i, rand.nextInt(2));
}
}
//Mutation Function
public void mutate(){
Random rand = new Random();
int index = rand.nextInt(SIZE);
this.setGene(index, 1-this.getGene(index)); // Flipping value of gene
}
//Function to set Fitness value of an individual
public int evaluate(){
int fitness = 0;
for(int i=0; i<SIZE; ++i) {
fitness += this.getGene(i);
}
this.setFitnessValue(fitness);
return fitness;
}
}
Population.java
import java.util.Random;
public class Population {
final static int ELITISM = 5;
final static int POP_SIZE = 200+ELITISM; //Population size + Elitism (1)
final static int MAX_ITER = 10000;
final static double MUTATION_RATE = 0.05;
final static double CROSSOVER_RATE = 0.7;
public static int generation = 2;
private static Random rand = new Random();
private double totalFitness;
private Individual[] pop;
//Constructor
public Population(){
pop = new Individual[POP_SIZE];
//Initialising population
for(int i=0;i<POP_SIZE;i++){
pop[i] = new Individual();
pop[i].generateIndividual();
}
//Evaluating current population
this.evaluate();
}
//Storing new generation in population
public void setPopulation(Individual[] newPop) {
System.arraycopy(newPop, 0, this.pop, 0, POP_SIZE);
}
//Method to find total fitness of population
public double evaluate(){
this.totalFitness = 0.0;
for (int i = 0; i < POP_SIZE; i++) {
this.totalFitness += pop[i].evaluate();
}
return this.totalFitness;
}
//Getters
public Individual getIndividual(int index) {
return pop[index];
}
//Function to find fittest individual for elitism
public Individual getFittest() {
Individual fittest = pop[0];
for (int i = 0; i < POP_SIZE; i++) {
if (fittest.getFitnessValue() <= getIndividual(i).getFitnessValue()) {
fittest = getIndividual(i);
}
}
return fittest;
}
//CROSSOVER Function : Takes 2 individuals and returns 2 new individuals
public static Individual[] crossover(Individual indiv1,Individual indiv2) {
Individual[] newIndiv = new Individual[2];
newIndiv[0] = new Individual();
newIndiv[1] = new Individual();
int randPoint = rand.nextInt(Individual.SIZE);
int i;
for (i=0; i<randPoint; ++i) {
newIndiv[0].setGene(i, indiv1.getGene(i));
newIndiv[1].setGene(i, indiv2.getGene(i));
}
for (; i<Individual.SIZE; ++i) {
newIndiv[0].setGene(i, indiv2.getGene(i));
newIndiv[1].setGene(i, indiv1.getGene(i));
}
return newIndiv;
}
//Roulette Wheel Selection Function
public Individual rouletteWheelSelection() {
double randNum = rand.nextDouble() * this.totalFitness;
int idx;
for (idx=0; idx<POP_SIZE && randNum>0; idx++) {
randNum -= pop[idx].getFitnessValue();
}
return pop[idx-1];
}
//Main method
public static void main(String[] args) {
Population pop = new Population();
Individual[] newPop = new Individual[POP_SIZE];
Individual[] indiv = new Individual[2];
//Current Population Stats
System.out.print("Generation #1");
System.out.println("Total Fitness = "+pop.totalFitness);
System.out.println("Best Fitness = "+pop.getFittest().getFitnessValue());
int count;
for(int iter=0;iter<MAX_ITER;iter++){
count =0;
//Elitism
newPop[count] = pop.getFittest();
count++;
//Creating new population
while(count < POP_SIZE){
//Selecting parents
indiv[0] = pop.rouletteWheelSelection();
indiv[1] = pop.rouletteWheelSelection();
// Crossover
if (rand.nextDouble() < CROSSOVER_RATE ) {
indiv = crossover(indiv[0], indiv[1]);
}
// Mutation
if ( rand.nextDouble() < MUTATION_RATE ) {
indiv[0].mutate();
}
if ( rand.nextDouble() < MUTATION_RATE ) {
indiv[1].mutate();
}
// add to new population
newPop[count] = indiv[0];
newPop[count+1] = indiv[1];
count += 2;
}
// Saving new population in pop
pop.setPopulation(newPop);
//Evaluating new population
pop.evaluate();
System.out.println("Generation #"+ generation++);
System.out.print("Total Fitness = " + pop.totalFitness);
System.out.println(" ; Best Fitness = " +pop.getFittest().getFitnessValue());
}
Individual bestIndiv = pop.getFittest();
}
}
我被要求使用以下功能测试我的算法: https://en.wikipedia.org/wiki/Test_functions_for_optimization 单目标优化的测试函数
任何人都可以解释它是如何完成的吗?列表中任何一个函数的解释都会有所帮助。
答案 0 :(得分:3)
我会假设你的遗传算法的实现是正确的,因为这超出了这个问题的范围。
现在你的健身功能被定义为所有基因的总和:
double fitness = 0;
for(int i=0; i<SIZE; ++i) {
fitness += this.getGene(i);
}
this.setFitnessValue(fitness);
这是一件奇怪的事情:让我们想想一个个体女巫会有很高的适应能力。我希望你看到没有真正的最佳状态,个人只会倾向于增加他们的每个基因,因为这将存档更高的适应性。
第二个问题是基因应该代表什么:基因阵列中的双打实际意味着什么?我们为什么关心?一个可能的例子是让它们代表模拟中个人的行为。这当然是另一个主题,所以我们需要它们来表示一些简单的东西,以便计算它们的适应性。
让我们让数组的大小为1,让我们说x = genes[0]
。个体只有一个基因:x坐标。现在我们需要定义我们的适应度函数,我们将选择带有y = 0
的Easom。这就是我如何定义新的适应度函数:
double fitness = -cos(x)*cos(0)*exp(-(pow(x-PI,2)+pow(0-PI,2)));
当然,在课程顶部有适当的导入:
import static java.lang.Math.*;
如果您的程序确实针对适应性进行了优化,那么它应该收敛到x = PI
。我很快写了自己的(不可否认的是非常丑陋的)implementation,它确实收敛了。
还有一件事:基因应该是double[]
而不是int[]
,因为当x
只能是int
时,逐步优化函数并不会真正起作用}。
我认为你的作业希望你使用double
数组作为基因,这样你最终得到的程序可以用任意数量的变量优化任何函数。在编程中,编写可以重用于多个不同事物的代码总是一个好主意。
我试图尽可能清楚地解释一切,但如果你不明白,可以随意提问!