如何在数据帧中使用.csv文件构建三方网络?

时间:2016-12-25 08:33:23

标签: r csv igraph

enter image description here 我试过这个三方图代码。但我必须使用.csv文件

library(igraph)
    data = "From, To
    Recipe:Chicken Marsala,flour
    Recipe:Chicken Marsala,sage
    Recipe:Chicken Marsala,chicken
    Recipe:Chicken Marsala,wine
    Recipe:Chicken Marsala,butter
    Recipe:Glazed Carrots,butter
    Recipe:Glazed Carrots,vinegar
    Recipe:Glazed Carrots,carrot
    Recipe:Glazed Carrots,chive
    flour,compound:X2
    sage,compound:X3
    chicken,compound:X6
    chicken,compound:X7
    wine,compound:X1
    wine,compound:X4
    wine,compound:X5
    wine,compound:X8
    wine,compound:X9
    wine,compound:X10
    wine,compound:X11
    wine,compound:X12
    butter,compound:X4
    butter,compound:X5
    butter,compound:X7
    butter,compound:X8
    butter,compound:X11
    vinegar,compound:X8
    vinegar,compound:X13
    carrot,compound:X2
    carrot,compound:X15
    chive,compound:X6
    chive,compound:X14
    "
    Read the data in from the text version above into a data frame:

    data=read.csv(textConnection(data),head=TRUE)
    Make a graph out of it:

    g = graph_from_data_frame(data,directed=FALSE)
    Assign numbers to layers by type. layer 2 is ingredients, layer 1 is recipes, layer 3 is compounds:

    layer = rep(2, length(V(g)$name))
    layer[grep("Recipe:",V(g)$name)]=1
    layer[grep("compound:",V(g)$name)]=3
    now get rid of the prefix

    names = V(g)$name
    names = sub("Recipe:","", names)
    names = sub("compound:","", names)
    V(g)$name = names
    Now compute a layout

    layout = layout_with_sugiyama(g, layers=layer)
    Now plot using the coordinates from the layout. Default seems to be vertical, so use first column as Y coordinate and layer number as X coordinate. Set shape and size etc by layer.

    plot(g,
         layout=cbind(layer,layout$layout[,1]),
         vertex.shape=c("square","circle","none")[layer],
         vertex.size=c(50,20,0)[layer],
         vertex.label.dist=c(0,0,.8)[layer],
         vertex.label.degree=0)

我已经使用了.csv文件,他们的疾病有相关的症状。我想制作三方图,并希望使用R绘制一个二分网络图。

symptom     disease             Person
Abdominal pain  Abdominal aortic aneurysm   Person1
Abdominal pain  Acute liver failure     Person2
Abdominal pain  Addison's disease       Person2
Abdominal pain  Alcoholic hepatitis     Person1
Abdominal pain  Anaphylaxis         Person1
Abdominal pain  Antibiotic-associated diarrhea  Person3
Abdominal pain  Aortic aneurysm         Person4
Abdominal pain  Appendicitis            Person4
Abdominal pain  Ascariasis          Person4
Abdominal pain  Barrett's esophagus     Person4

但是当我执行下面的代码时,这只绘制疾病和症状的二分图。请帮助我在哪里犯错误。

 datafile <- "c:\\dp.csv" 
        el <- read.csv(datafile) 
        g = graph_from_data_frame(el,directed=FALSE)   
 layer=rep(2,length(V(g)name))
    layer[grep("Diseases",V(g)name)]=1 
    layer[grep("Symptoms",V(g)name)]=3
    names=V(g)name)]=3
    names=V(g)
    name names = sub("Diseases","", names) 
    names = sub("Symptoms","", names) V(g)
    V(g)$name = names
    Now compute a layout
        layout = layout_with_sugiyama(g, layers=layer)
        plot(g,
             layout=cbind(layer,layout$layout[,1]),
             vertex.shape=c("square","circle","none")[layer],
             vertex.size=c(50,20,0)[layer],
             vertex.label.dist=c(0,0,.8)[layer],
             vertex.label.degree=0)

以及如何使用上面的疾病数据集使用R而不是三方图来绘制像三方网络这样的图像我正在问这样的网络。

1 个答案:

答案 0 :(得分:1)

你可以尝试

df <- read.csv2(text="symptom;disease;Person
Abdominal pain;Abdominal aortic aneurysm;Person1
Abdominal pain;Acute liver failure;Person2
Abdominal pain;Addison's disease;Person2
Abdominal pain;Alcoholic hepatitis;Person1
Abdominal pain;Anaphylaxis;Person1
Abdominal pain;Antibiotic-associated diarrhea;Person3
Abdominal pain;Aortic aneurysm;Person4
Abdominal pain;Appendicitis;Person4
Abdominal pain;Ascariasis;Person4
Abdominal pain;Barrett's esophagus;Person4")
m <- as.matrix(df)
g <- graph_from_edgelist(rbind(m[,1:2], m[,2:3]), directed = F)
l <- layout_with_sugiyama(g, ceiling(match(V(g)$name, m)/nrow(m)))
plot(g, layout=-l$layout[,2:1])

enter image description here