目标
我有一个Pandas数据框,如下所示,有多列,希望得到总列MyColumn
。
数据框 - df
:
print df
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
我的尝试 :
我试图使用groupby
和.sum()
来获取列的总和:
Total = df.groupby['MyColumn'].sum()
print Total
这会导致以下错误:
TypeError: 'instancemethod' object has no attribute '__getitem__'
预期输出
我预计输出结果如下:
319
或者,我希望使用包含总数的新df
row
来编辑TOTAL
:
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
TOTAL 319
答案 0 :(得分:128)
您应该使用sum
:
Total = df['MyColumn'].sum()
print (Total)
319
然后您将loc
与Series
一起使用,在这种情况下,索引应设置为与您需要求和的特定列相同:
df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
因为如果你传递标量,所有行的值都将被填充:
df.loc['Total'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
Total 319 319 319.0 319.0
df.at['Total', 'MyColumn'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
df.ix['Total', 'MyColumn'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
注意:自Pandas v0.20以来,ix
已被弃用。请改用loc
或iloc
。
答案 1 :(得分:14)
您可以在此处使用另一个选项:
df.loc["Total", "MyColumn"] = df.MyColumn.sum()
# X MyColumn Y Z
#0 A 84.0 13.0 69.0
#1 B 76.0 77.0 127.0
#2 C 28.0 69.0 16.0
#3 D 28.0 28.0 31.0
#4 E 19.0 20.0 85.0
#5 F 84.0 193.0 70.0
#Total NaN 319.0 NaN NaN
您还可以使用append()
方法:
df.append(pd.DataFrame(df.MyColumn.sum(), index = ["Total"], columns=["MyColumn"]))
<强>更新强>
如果您需要为所有数字列附加总和,您可以执行以下操作之一:
使用append
以功能方式执行此操作(不会更改原始数据框):
# select numeric columns and calculate the sums
sums = df.select_dtypes(pd.np.number).sum().rename('total')
# append sums to the data frame
df.append(sums)
# X MyColumn Y Z
#0 A 84.0 13.0 69.0
#1 B 76.0 77.0 127.0
#2 C 28.0 69.0 16.0
#3 D 28.0 28.0 31.0
#4 E 19.0 20.0 85.0
#5 F 84.0 193.0 70.0
#total NaN 319.0 400.0 398.0
使用loc
来改变数据框:
df.loc['total'] = df.select_dtypes(pd.np.number).sum()
df
# X MyColumn Y Z
#0 A 84.0 13.0 69.0
#1 B 76.0 77.0 127.0
#2 C 28.0 69.0 16.0
#3 D 28.0 28.0 31.0
#4 E 19.0 20.0 85.0
#5 F 84.0 193.0 70.0
#total NaN 638.0 800.0 796.0
答案 2 :(得分:4)
类似于获取数据帧的长度len(df)
,以下内容适用于pandas和blaze:
Total = sum(df['MyColumn'])
或者
Total = sum(df.MyColumn)
print Total
答案 3 :(得分:-1)
作为其他选择,您可以执行以下操作
Group Valuation amount
0 BKB Tube 156
1 BKB Tube 143
2 BKB Tube 67
3 BAC Tube 176
4 BAC Tube 39
5 JDK Tube 75
6 JDK Tube 35
7 JDK Tube 155
8 ETH Tube 38
9 ETH Tube 56
下面的脚本,您可以使用上面的数据
import pandas as pd
data = pd.read_csv("daata1.csv")
bytreatment = data.groupby('Group')
bytreatment['amount'].sum()