在下面的python代码中,为什么通过numpy进行乘法的时间远小于via tensorflow?
import tensorflow as tf
import numpy as np
import time
size=10000
x = tf.placeholder(tf.float32, shape=(size, size))
y = tf.matmul(x, x)
with tf.Session() as sess:
rand_array = np.random.rand(size, size)
start_time = time.time()
np.multiply(rand_array,rand_array)
print("--- %s seconds numpy multiply ---" % (time.time() - start_time))
start_time = time.time()
sess.run(y, feed_dict={x: rand_array})
print("--- %s seconds tensorflow---" % (time.time() - start_time))
输出
--- 0.22089099884 seconds numpy multiply ---
--- 34.3198359013 seconds tensorflow---
答案 0 :(得分:6)
嗯,引用文档:
numpy.multiply(x1,x2 [,out])=乘法参数 逐元素。
和
tf.matmul(a,b,transpose_a = False,transpose_b = False, a_is_sparse = False,b_is_sparse = False,name = None)
将矩阵a乘以矩阵b,产生* b。
输入必须是二维矩阵,内部匹配 尺寸,可能在换位后。
这表明您比较不同的操作:O(n ^ 2)逐点乘法与O(n ^ 3)矩阵乘法。我纠正了测试,在两种情况下使用矩阵乘法2次:
import tensorflow as tf
import numpy as np
import time
size=2000
x = tf.placeholder(tf.float32, shape=(size, size))
y = tf.matmul(x, x)
z = tf.matmul(y, x)
with tf.Session() as sess:
rand_array = np.random.rand(size, size)
start_time = time.time()
for _ in xrange(10):
np.dot(np.dot(rand_array,rand_array), rand_array)
print("--- %s seconds numpy multiply ---" % (time.time() - start_time))
start_time = time.time()
for _ in xrange(10):
sess.run(z, feed_dict={x: rand_array})
print("--- %s seconds tensorflow---" % (time.time() - start_time))
得到了结果:
--- 2.92911195755 seconds numpy multiply ---
--- 0.32932305336 seconds tensorflow---
使用快速GPU(gtx 1070)。