我正在处理如下所示的数据。设备列表,以及JSON格式的事务记录。
device_id | net_revenue_map
1984691C-1EC1-4743-8DC5-55D882388C29 | {"2016-12-11":3.66}
56132A1A-ACEF-4073-878B-98E62E84FDB5 | {"2016-12-10":3.493}
036DF381-72DE-4523-9576-D79FFDB33820 | {"2016-12-10":3.493}
D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 | {"2016-12-11":1.543,"2016-12-10":1.543,"2016-12-12":1.543}
E70CA4A8-D5F5-42A1-ADC4-392A2930B779 | {"2016-12-11":3.685}
E7A508A8-3517-4F5A-9876-5B7704ABD7FD | {"2016-12-11":1.393}
43BE8905-CDDF-440C-A705-C80C06D448E2 | {"2016-12-11":1.393}
CCACC621-05A9-4727-B214-730B56E49FC9 | {"2016-12-12":27.728}
我正在尝试解析JSON,以便将其转换为类似以下内容:
device_id | transaction_date | Transaction_Amt
1984691C-1EC1-4743-8DC5-55D882388C29 | 2016-12-11 | 3.66
56132A1A-ACEF-4073-878B-98E62E84FDB5 | 2016-12-10 | 3.493
036DF381-72DE-4523-9576-D79FFDB33820 | 2016-12-10 | 3.493
D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 | 2016-12-11 | 1.543
D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 | 2016-12-10 | 1.543
D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 | 2016-12-12 | 1.543
E70CA4A8-D5F5-42A1-ADC4-392A2930B779 | 2016-12-11 | 3.685
E7A508A8-3517-4F5A-9876-5B7704ABD7FD | 2016-12-11 | 1.393
43BE8905-CDDF-440C-A705-C80C06D448E2 | 2016-12-11 | 1.393
CCACC621-05A9-4727-B214-730B56E49FC9 | 2016-12-12 | 27.728
尝试以下代码时,我收到错误
library(jsonlite)
parse <- fromJSON(record_test[,2])
Error: parse error: trailing garbage
{"2016-12-11":3.66} {"2016-12-10":3.493} {"2016-12-
(right here) ------^
我是否需要在每列的末尾添加逗号?我所看到的解析JSON的大多数其他答案都是纯粹的JSON数据框,但是在数据框中只包含一列JSON,所以这就是我遇到问题的地方。
答案 0 :(得分:3)
这是一个整齐的方法:
library(tidyverse)
df %>%
# read each entry into list column
mutate(json = map(net_revenue_map, jsonlite::fromJSON),
date = map(json, names), # extract dates from list names
date = map(date, as.Date), # convert to proper dates
amount = map(json, simplify)) %>% # simplify list to values
unnest(date, amount) %>% # expand list columns
select(-net_revenue_map) # clean up
## # A tibble: 10 × 3
## device_id date amount
## <chr> <date> <dbl>
## 1 1984691C-1EC1-4743-8DC5-55D882388C29 2016-12-11 3.660
## 2 56132A1A-ACEF-4073-878B-98E62E84FDB5 2016-12-10 3.493
## 3 036DF381-72DE-4523-9576-D79FFDB33820 2016-12-10 3.493
## 4 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 2016-12-11 1.543
## 5 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 2016-12-10 1.543
## 6 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 2016-12-12 1.543
## 7 E70CA4A8-D5F5-42A1-ADC4-392A2930B779 2016-12-11 3.685
## 8 E7A508A8-3517-4F5A-9876-5B7704ABD7FD 2016-12-11 1.393
## 9 43BE8905-CDDF-440C-A705-C80C06D448E2 2016-12-11 1.393
## 10 CCACC621-05A9-4727-B214-730B56E49FC9 2016-12-12 27.728
或等效基数R(显然保存jsonlite::fromJSON
)
df$amount <- lapply(df$net_revenue_map, jsonlite::fromJSON)
df$date <- lapply(df$amount, function(x){as.Date(names(x))})
df$amount <- lapply(df$amount, unlist)
df$net_revenue_map <- NULL
df <- do.call(rbind, apply(df, 1, data.frame))
rownames(df) <- NULL
df
## device_id amount date
## 1 1984691C-1EC1-4743-8DC5-55D882388C29 3.660 2016-12-11
## 2 56132A1A-ACEF-4073-878B-98E62E84FDB5 3.493 2016-12-10
## 3 036DF381-72DE-4523-9576-D79FFDB33820 3.493 2016-12-10
## 4 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 1.543 2016-12-11
## 5 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 1.543 2016-12-10
## 6 D622F3F8-BEC0-4B42-AE99-B10527DFA8B0 1.543 2016-12-12
## 7 E70CA4A8-D5F5-42A1-ADC4-392A2930B779 3.685 2016-12-11
## 8 E7A508A8-3517-4F5A-9876-5B7704ABD7FD 1.393 2016-12-11
## 9 43BE8905-CDDF-440C-A705-C80C06D448E2 1.393 2016-12-11
## 10 CCACC621-05A9-4727-B214-730B56E49FC9 27.728 2016-12-12
df <- structure(list(device_id = c("1984691C-1EC1-4743-8DC5-55D882388C29",
"56132A1A-ACEF-4073-878B-98E62E84FDB5", "036DF381-72DE-4523-9576-D79FFDB33820",
"D622F3F8-BEC0-4B42-AE99-B10527DFA8B0", "E70CA4A8-D5F5-42A1-ADC4-392A2930B779",
"E7A508A8-3517-4F5A-9876-5B7704ABD7FD", "43BE8905-CDDF-440C-A705-C80C06D448E2",
"CCACC621-05A9-4727-B214-730B56E49FC9"), net_revenue_map = c("{\"2016-12-11\":3.66}",
"{\"2016-12-10\":3.493}", "{\"2016-12-10\":3.493}", "{\"2016-12-11\":1.543,\"2016-12-10\":1.543,\"2016-12-12\":1.543}",
"{\"2016-12-11\":3.685}", "{\"2016-12-11\":1.393}", "{\"2016-12-11\":1.393}",
"{\"2016-12-12\":27.728}")), .Names = c("device_id", "net_revenue_map"
), class = "data.frame", row.names = c(NA, -8L))
答案 1 :(得分:1)
替代整齐的方法:
library(jsonlite)
library(dplyr)
rowwise(df) %>%
do(data_frame(device_id=.$device_id,
amount=unlist(fromJSON(.$net_revenue_map)),
date=names(fromJSON(.$net_revenue_map))))