我有类似下面的多索引Pandas系列,其中的值由Team,Year和Gender索引。
>>> import pandas as pd
>>> import numpy as np
>>> multi_index=pd.MultiIndex.from_product([['Team A','Team B', 'Team C', 'Team D'],[2015,2016],['Male','Female']], names = ['Team','Year','Gender'])
>>> np.random.seed(0)
>>> df=pd.Series(index=multi_index, data=np.random.randint(1, 10, 16))
>>> df
>>>
Team Year Gender
Team A 2015 Male 6
Female 1
2016 Male 4
Female 4
Team B 2015 Male 8
Female 4
2016 Male 6
Female 3
Team C 2015 Male 5
Female 8
2016 Male 7
Female 9
Team D 2015 Male 9
Female 2
2016 Male 7
Female 8
我的目标是为每个4年/性别组合(2015年男性,男性2016年,女性2015年和女性2016年)获得团队排名顺序的数据框。
我的方法是首先将数据帧取消堆叠,以便由团队编制索引......
>>> unstacked_df = df.unstack(['Year','Gender'])
>>> print unstacked_df
>>>
>>>
Year 2015 2016
Gender Male Female Male Female
Team
Team A 6 1 4 4
Team B 8 4 6 3
Team C 5 8 7 9
Team D 9 2 7 8
然后通过循环并对这4列中的每一列进行排序,从索引顺序创建一个数据框......
>>> team_orders = np.array([unstacked_df.sort_values(x).index.tolist() for x in unstacked_df.columns]).T
>>> result = pd.DataFrame(team_orders, columns=unstacked_df.columns)
>>> print result
Year 2015 2016
Gender Male Female Male Female
0 Team C Team A Team A Team B
1 Team A Team D Team B Team A
2 Team B Team B Team C Team D
3 Team D Team C Team D Team C
我缺少一种更简单/更好的方法吗?
答案 0 :(得分:2)
从您的未堆叠版本开始,您可以使用.argsort()
与.apply()
对每列进行排名,然后将其用作对索引的查找:
df.unstack([1,2]).apply(lambda x: x.index[x.argsort()]).reset_index(drop=True)
Year 2015 2016
Gender Male Female Male Female
0 Team C Team A Team A Team B
1 Team A Team D Team B Team A
2 Team B Team B Team C Team D
3 Team D Team C Team D Team C
编辑:以下是有关其原因的更多信息。只需.argsort()
即可获得:
print df.unstack([1,2]).apply(lambda x: x.argsort())
Year 2015 2016
Gender Male Female Male Female
Team
Team A 2 0 0 1
Team B 0 3 1 0
Team C 1 1 2 3
Team D 3 2 3 2
查找位基本上只对每列执行以下操作:
df.unstack([1,2]).index[[2,0,1,3]]
Index([u'Team C', u'Team A', u'Team B', u'Team D'], dtype='object', name=u'Team')
并且.reset_index()
摆脱了现在无意义的索引标签。