我有一个集合:
List<VPair<Item, List<Item>> dependencyHierarchy;
对中的第一项是某个对象(项),第二项是第一项依赖的相同类型对象的集合。我希望按依赖顺序获得List<Item>
,因此没有项依赖于第一个元素,依此类推(没有循环依赖!)。
输入:
Item4 depends on Item3 and Item5 Item3 depends on Item1 Item1 does not depend on any one Item2 depends on Item4 Item5 does not depend on any one
结果:
Item1 Item5 Item3 Item4 Item2
谢谢。
解决方案:
拓扑排序(感谢Loïc Février的想法)
和
example on C#,example on Java(感谢xcud提供了很好的例子)
答案 0 :(得分:79)
我已经挣扎了一段时间,这是我尝试使用Linq风格的TSort扩展方法:
public static IEnumerable<T> TSort<T>( this IEnumerable<T> source, Func<T, IEnumerable<T>> dependencies, bool throwOnCycle = false )
{
var sorted = new List<T>();
var visited = new HashSet<T>();
foreach( var item in source )
Visit( item, visited, sorted, dependencies, throwOnCycle );
return sorted;
}
private static void Visit<T>( T item, HashSet<T> visited, List<T> sorted, Func<T, IEnumerable<T>> dependencies, bool throwOnCycle )
{
if( !visited.Contains( item ) )
{
visited.Add( item );
foreach( var dep in dependencies( item ) )
Visit( dep, visited, sorted, dependencies, throwOnCycle );
sorted.Add( item );
}
else
{
if( throwOnCycle && !sorted.Contains( item ) )
throw new Exception( "Cyclic dependency found" );
}
}
答案 1 :(得分:41)
答案 2 :(得分:18)
这是的核心。
对于我们这些不想重新发明轮子的人:使用nuget安装QuickGraph .NET库,其中包括多种图形算法,包括拓扑排序。
要使用它,您需要创建AdjacencyGraph<,>
的实例,例如AdjacencyGraph<String, SEdge<String>>
。然后,如果您包含适当的扩展名:
using QuickGraph.Algorithms;
您可以致电:
var sorted = myGraph.TopologicalSort();
获取已排序节点的列表。
答案 3 :(得分:10)
我喜欢DMM的答案,但它假设输入节点是叶子(可能是也可能不是预期的那样)。
我发布了一个使用LINQ的备用解决方案,但没有做出这个假设。此外,此解决方案使用yield return
来快速返回树叶(例如使用TakeWhile
)。
public static IEnumerable<T> TopologicalSort<T>(this IEnumerable<T> nodes,
Func<T, IEnumerable<T>> connected)
{
var elems = nodes.ToDictionary(node => node,
node => new HashSet<T>(connected(node)));
while (elems.Count > 0)
{
var elem = elems.FirstOrDefault(x => x.Value.Count == 0);
if (elem.Key == null)
{
throw new ArgumentException("Cyclic connections are not allowed");
}
elems.Remove(elem.Key);
foreach (var selem in elems)
{
selem.Value.Remove(elem.Key);
}
yield return elem.Key;
}
}
答案 4 :(得分:6)
这是我自己重新实现的拓扑排序,这个想法基于http://tawani.blogspot.com/2009/02/topological-sorting-and-cyclic.html(移植的Java源代码消耗太多内存,检查50k对象成本50k * 50k * 4 = 10GB这是不可接受的。另外,它还有一些地方的Java编码约定)
using System.Collections.Generic;
using System.Diagnostics;
namespace Modules
{
/// <summary>
/// Provides fast-algorithm and low-memory usage to sort objects based on their dependencies.
/// </summary>
/// <remarks>
/// Definition: http://en.wikipedia.org/wiki/Topological_sorting
/// Source code credited to: http://tawani.blogspot.com/2009/02/topological-sorting-and-cyclic.html
/// Original Java source code: http://www.java2s.com/Code/Java/Collections-Data-Structure/Topologicalsorting.htm
/// </remarks>
/// <author>ThangTran</author>
/// <history>
/// 2012.03.21 - ThangTran: rewritten based on <see cref="TopologicalSorter"/>.
/// </history>
public class DependencySorter<T>
{
//**************************************************
//
// Private members
//
//**************************************************
#region Private members
/// <summary>
/// Gets the dependency matrix used by this instance.
/// </summary>
private readonly Dictionary<T, Dictionary<T, object>> _matrix = new Dictionary<T, Dictionary<T, object>>();
#endregion
//**************************************************
//
// Public methods
//
//**************************************************
#region Public methods
/// <summary>
/// Adds a list of objects that will be sorted.
/// </summary>
public void AddObjects(params T[] objects)
{
// --- Begin parameters checking code -----------------------------
Debug.Assert(objects != null);
Debug.Assert(objects.Length > 0);
// --- End parameters checking code -------------------------------
// add to matrix
foreach (T obj in objects)
{
// add to dictionary
_matrix.Add(obj, new Dictionary<T, object>());
}
}
/// <summary>
/// Sets dependencies of given object.
/// This means <paramref name="obj"/> depends on these <paramref name="dependsOnObjects"/> to run.
/// Please make sure objects given in the <paramref name="obj"/> and <paramref name="dependsOnObjects"/> are added first.
/// </summary>
public void SetDependencies(T obj, params T[] dependsOnObjects)
{
// --- Begin parameters checking code -----------------------------
Debug.Assert(dependsOnObjects != null);
// --- End parameters checking code -------------------------------
// set dependencies
Dictionary<T, object> dependencies = _matrix[obj];
dependencies.Clear();
// for each depended objects, add to dependencies
foreach (T dependsOnObject in dependsOnObjects)
{
dependencies.Add(dependsOnObject, null);
}
}
/// <summary>
/// Sorts objects based on this dependencies.
/// Note: because of the nature of algorithm and memory usage efficiency, this method can be used only one time.
/// </summary>
public T[] Sort()
{
// prepare result
List<T> result = new List<T>(_matrix.Count);
// while there are still object to get
while (_matrix.Count > 0)
{
// get an independent object
T independentObject;
if (!this.GetIndependentObject(out independentObject))
{
// circular dependency found
throw new CircularReferenceException();
}
// add to result
result.Add(independentObject);
// delete processed object
this.DeleteObject(independentObject);
}
// return result
return result.ToArray();
}
#endregion
//**************************************************
//
// Private methods
//
//**************************************************
#region Private methods
/// <summary>
/// Returns independent object or returns NULL if no independent object is found.
/// </summary>
private bool GetIndependentObject(out T result)
{
// for each object
foreach (KeyValuePair<T, Dictionary<T, object>> pair in _matrix)
{
// if the object contains any dependency
if (pair.Value.Count > 0)
{
// has dependency, skip it
continue;
}
// found
result = pair.Key;
return true;
}
// not found
result = default(T);
return false;
}
/// <summary>
/// Deletes given object from the matrix.
/// </summary>
private void DeleteObject(T obj)
{
// delete object from matrix
_matrix.Remove(obj);
// for each object, remove the dependency reference
foreach (KeyValuePair<T, Dictionary<T, object>> pair in _matrix)
{
// if current object depends on deleting object
pair.Value.Remove(obj);
}
}
#endregion
}
/// <summary>
/// Represents a circular reference exception when sorting dependency objects.
/// </summary>
public class CircularReferenceException : Exception
{
/// <summary>
/// Initializes a new instance of the <see cref="CircularReferenceException"/> class.
/// </summary>
public CircularReferenceException()
: base("Circular reference found.")
{
}
}
}
答案 5 :(得分:1)
通过将Item的依赖项存储在Item本身中,我会让自己变得更容易:
public class Item
{
private List<Item> m_Dependencies = new List<Item>();
protected AddDependency(Item _item) { m_Dependencies.Add(_item); }
public Item()
{
}; // eo ctor
public List<Item> Dependencies {get{return(m_Dependencies);};}
} // eo class Item
然后,鉴于此,您可以为List实现自定义Sort委托,该委托根据给定Item是否包含在另一个依赖项列表中进行排序:
int CompareItem(Item _1, Item _2)
{
if(_2.Dependencies.Contains(_1))
return(-1);
else if(_1.Dependencies.Contains(_2))
return(1);
else
return(0);
}
答案 6 :(得分:1)
一个不同的想法,对于只有一个“父母”的情况:
而不是deps,你会存储父母
因此,您可以非常轻松地判断问题是否是其他问题的依赖性
然后使用Comparable<T>
,它会声称依赖项“较小”,依赖项“较大”
然后只需致电Collections.sort( List<T>, ParentComparator<T>);
对于多父场景,将需要树搜索,这将导致执行缓慢。但这可以通过A *排序矩阵形式的缓存来解决。
答案 7 :(得分:1)
我将DMM的想法与维基百科上的深度优先搜索算法合并。它非常适合我需要的东西。
public static class TopologicalSorter
{
public static List<string> LastCyclicOrder = new List<string>(); //used to see what caused the cycle
sealed class ItemTag
{
public enum SortTag
{
NotMarked,
TempMarked,
Marked
}
public string Item { get; set; }
public SortTag Tag { get; set; }
public ItemTag(string item)
{
Item = item;
Tag = SortTag.NotMarked;
}
}
public static IEnumerable<string> TSort(this IEnumerable<string> source, Func<string, IEnumerable<string>> dependencies)
{
TopologicalSorter.LastCyclicOrder.Clear();
List<ItemTag> allNodes = new List<ItemTag>();
HashSet<string> sorted = new HashSet<string>(StringComparer.OrdinalIgnoreCase);
foreach (string item in source)
{
if (!allNodes.Where(n => string.Equals(n.Item, item, StringComparison.OrdinalIgnoreCase)).Any())
{
allNodes.Add(new ItemTag(item)); //don't insert duplicates
}
foreach (string dep in dependencies(item))
{
if (allNodes.Where(n => string.Equals(n.Item, dep, StringComparison.OrdinalIgnoreCase)).Any()) continue; //don't insert duplicates
allNodes.Add(new ItemTag(dep));
}
}
foreach (ItemTag tag in allNodes)
{
Visit(tag, allNodes, dependencies, sorted);
}
return sorted;
}
static void Visit(ItemTag tag, List<ItemTag> allNodes, Func<string, IEnumerable<string>> dependencies, HashSet<string> sorted)
{
if (tag.Tag == ItemTag.SortTag.TempMarked)
{
throw new GraphIsCyclicException();
}
else if (tag.Tag == ItemTag.SortTag.NotMarked)
{
tag.Tag = ItemTag.SortTag.TempMarked;
LastCyclicOrder.Add(tag.Item);
foreach (ItemTag dep in dependencies(tag.Item).Select(s => allNodes.Where(t => string.Equals(s, t.Item, StringComparison.OrdinalIgnoreCase)).First())) //get item tag which falls with used string
Visit(dep, allNodes, dependencies, sorted);
LastCyclicOrder.Remove(tag.Item);
tag.Tag = ItemTag.SortTag.Marked;
sorted.Add(tag.Item);
}
}
}
答案 8 :(得分:0)
这是来自帖子https://stackoverflow.com/a/9991916/4805491的重构代码。
// Version 1
public static class TopologicalSorter<T> where T : class {
public struct Item {
public readonly T Object;
public readonly T Dependency;
public Item(T @object, T dependency) {
Object = @object;
Dependency = dependency;
}
}
public static T[] Sort(T[] objects, Func<T, T, bool> isDependency) {
return Sort( objects.ToList(), isDependency ).ToArray();
}
public static T[] Sort(T[] objects, Item[] dependencies) {
return Sort( objects.ToList(), dependencies.ToList() ).ToArray();
}
private static List<T> Sort(List<T> objects, Func<T, T, bool> isDependency) {
return Sort( objects, GetDependencies( objects, isDependency ) );
}
private static List<T> Sort(List<T> objects, List<Item> dependencies) {
var result = new List<T>( objects.Count );
while (objects.Any()) {
var obj = GetIndependentObject( objects, dependencies );
RemoveObject( obj, objects, dependencies );
result.Add( obj );
}
return result;
}
private static List<Item> GetDependencies(List<T> objects, Func<T, T, bool> isDependency) {
var dependencies = new List<Item>();
for (var i = 0; i < objects.Count; i++) {
var obj1 = objects[i];
for (var j = i + 1; j < objects.Count; j++) {
var obj2 = objects[j];
if (isDependency( obj1, obj2 )) dependencies.Add( new Item( obj1, obj2 ) ); // obj2 is dependency of obj1
if (isDependency( obj2, obj1 )) dependencies.Add( new Item( obj2, obj1 ) ); // obj1 is dependency of obj2
}
}
return dependencies;
}
private static T GetIndependentObject(List<T> objects, List<Item> dependencies) {
foreach (var item in objects) {
if (!GetDependencies( item, dependencies ).Any()) return item;
}
throw new Exception( "Circular reference found" );
}
private static IEnumerable<Item> GetDependencies(T obj, List<Item> dependencies) {
return dependencies.Where( i => i.Object == obj );
}
private static void RemoveObject(T obj, List<T> objects, List<Item> dependencies) {
objects.Remove( obj );
dependencies.RemoveAll( i => i.Object == obj || i.Dependency == obj );
}
}
// Version 2
public class TopologicalSorter {
public static T[] Sort<T>(T[] source, Func<T, T, bool> isDependency) {
var list = new LinkedList<T>( source );
var result = new List<T>();
while (list.Any()) {
var obj = GetIndependentObject( list, isDependency );
list.Remove( obj );
result.Add( obj );
}
return result.ToArray();
}
private static T GetIndependentObject<T>(IEnumerable<T> list, Func<T, T, bool> isDependency) {
return list.First( i => !GetDependencies( i, list, isDependency ).Any() );
}
private static IEnumerable<T> GetDependencies<T>(T obj, IEnumerable<T> list, Func<T, T, bool> isDependency) {
return list.Where( i => isDependency( obj, i ) ); // i is dependency of obj
}
}
答案 9 :(得分:0)
我不喜欢递归方法,所以DMM不可用。 Krumelur看起来不错,但似乎占用了大量内存? 提出了一种似乎可行的基于堆栈的替代方法。使用与DMM相同的DFS逻辑,在测试时,我将此解决方案用作比较。
public static IEnumerable<T> TopogicalSequenceDFS<T>(this IEnumerable<T> source, Func<T, IEnumerable<T>> deps)
{
HashSet<T> yielded = new HashSet<T>();
HashSet<T> visited = new HashSet<T>();
Stack<Tuple<T, IEnumerator<T>>> stack = new Stack<Tuple<T, IEnumerator<T>>>();
foreach (T t in source)
{
stack.Clear();
if (visited.Add(t))
stack.Push(new Tuple<T, IEnumerator<T>>(t, deps(t).GetEnumerator()));
while (stack.Count > 0)
{
var p = stack.Peek();
bool depPushed = false;
while (p.Item2.MoveNext())
{
var curr = p.Item2.Current;
if (visited.Add(curr))
{
stack.Push(new Tuple<T, IEnumerator<T>>(curr, deps(curr).GetEnumerator()));
depPushed = true;
break;
}
else if (!yielded.Contains(curr))
throw new Exception("cycle");
}
if (!depPushed)
{
p = stack.Pop();
if (!yielded.Add(p.Item1))
throw new Exception("bug");
yield return p.Item1;
}
}
}
}
这也是基于BFS的较简单堆栈变体。它将产生与上述结果不同的结果,但仍然有效。我不确定使用上面的DFS变体是否有任何优势,但是创建它很有趣。
public static IEnumerable<T> TopologicalSequenceBFS<T>(this IEnumerable<T> source, Func<T, IEnumerable<T>> dependencies)
{
var yielded = new HashSet<T>();
var visited = new HashSet<T>();
var stack = new Stack<Tuple<T, bool>>(source.Select(s => new Tuple<T, bool>(s, false))); // bool signals Add to sorted
while (stack.Count > 0)
{
var item = stack.Pop();
if (!item.Item2)
{
if (visited.Add(item.Item1))
{
stack.Push(new Tuple<T, bool>(item.Item1, true)); // To be added after processing the dependencies
foreach (var dep in dependencies(item.Item1))
stack.Push(new Tuple<T, bool>(dep, false));
}
else if (!yielded.Contains(item.Item1))
throw new Exception("cyclic");
}
else
{
if (!yielded.Add(item.Item1))
throw new Exception("bug");
yield return item.Item1;
}
}
}
对于.NET 4.7+,我建议用ValueTuple替换Tuple,以减少内存使用。在较旧的.NET版本中,可以用KeyValuePair替换Tuple。