将scikit缩放数据映射回ID

时间:2016-12-08 14:35:19

标签: python python-3.x pandas machine-learning scikit-learn

我有pandas.DataFrame看起来像这样:

In [48]: df
Out[48]: 
        AMID         A         B         C
0  AMID-1000  0.149176  0.768200  0.689369
1  AMID-1001  0.169934  0.607390  0.471788
2  AMID-1002  0.632052  0.806657  0.994664
3  AMID-1003  0.003798  0.382427  0.894856
4  AMID-1004  0.182947  0.712373  0.870068
5  AMID-1005  0.385039  0.691643  0.546960
6  AMID-1006  0.971885  0.169759  0.804370
7  AMID-1007  0.443199  0.686212  0.377556
8  AMID-1008  0.149402  0.981370  0.588750
9  AMID-1009  0.214107  0.264285  0.463403

'AMID'包含数据点id,其余列中的每一列都是每个数据点的一个特征。

我想将此数据集与需要缩放数据的算法一起使用,以便每列都有mean == 0std == 1。我正在使用sklearn.preprocessing.StandardScaler,但为了扩展我需要删除非数字'AMID'列的数据集。

In [61]: from sklearn import preprocessing

In [62]: data = df[[_ for _ in df.columns.values.tolist() if _ not in ['AMID']]]

In [64]: scaler = preprocessing.StandardScaler().fit(data)

In [65]: data_scaled = scaler.transform(data)

In [66]: data_scaled
Out[66]: 
array([[ -6.60180258e-01,   6.63739262e-01,   9.55187160e-02],
       [ -5.84458777e-01,   1.47534202e-03,  -9.87448200e-01],
       [  1.10128130e+00,   8.22117198e-01,   1.61505880e+00],
       [ -1.19049913e+00,  -9.24989864e-01,   1.11828380e+00],
       [ -5.36991596e-01,   4.33827828e-01,   9.94906952e-01],
       [  2.00212895e-01,   3.48454485e-01,  -6.13293011e-01],
       [  2.34094244e+00,  -1.80081691e+00,   6.67913149e-01],
       [  4.12372276e-01,   3.26087187e-01,  -1.45646800e+00],
       [ -6.59357873e-01,   1.54163661e+00,  -4.05292050e-01],
       [ -4.23321269e-01,  -1.41153114e+00,  -1.02918017e+00]])

In [67]: data_scaled.mean(axis=0)
Out[67]: array([ -8.32667268e-17,  -4.44089210e-17,  -2.88657986e-16])

In [68]: data_scaled.std(axis=0)
Out[68]: array([ 1.,  1.,  1.])

到目前为止,事情看起来很棒!

现在我可以继续将这些数据提供给我的模型,然后使用测试数据进行测试(也使用相同的缩放器和拟合进行缩放)。但是,我需要能够确切地看到分类器为每个AMID提供的预测。所以,我想我应该将缩放后的数据映射回每个数据点的AMID,然后使用分类器的.predict()方法单独尝试每个数据点,否则我应该以某种方式映射{的结果{1}}返回.predict()

列表

我的第一个想法是将新值分配给原始数据框,类似于:

AMID

但我不确定这是否会扭曲原始In [73]: df_copy['A'] = data_scaled[:,0:1] In [74]: df_copy Out[74]: AMID A B C 0 AMID-1000 -0.660180 0.768200 0.689369 1 AMID-1001 -0.584459 0.607390 0.471788 2 AMID-1002 1.101281 0.806657 0.994664 3 AMID-1003 -1.190499 0.382427 0.894856 4 AMID-1004 -0.536992 0.712373 0.870068 5 AMID-1005 0.200213 0.691643 0.546960 6 AMID-1006 2.340942 0.169759 0.804370 7 AMID-1007 0.412372 0.686212 0.377556 8 AMID-1008 -0.659358 0.981370 0.588750 9 AMID-1009 -0.423321 0.264285 0.463403 与每列的缩放值之间的关联。

有更好的方法吗?

1 个答案:

答案 0 :(得分:2)

IIUC,我只是将AMID设置为索引(以便它不会干扰并使之更容易),然后随时重新创建数据帧,如下所示:

df.set_index('AMID', inplace=True)
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
df = pd.DataFrame(scaler.fit_transform(df), index=df.index, columns=df.columns)
df

                  A         B         C
AMID                                   
AMID-1000 -0.660181  0.663739  0.095517
AMID-1001 -0.584459  0.001476 -0.987447
AMID-1002  1.101281  0.822116  1.615059
AMID-1003 -1.190499 -0.924988  1.118286
AMID-1004 -0.536990  0.433827  0.994909
AMID-1005  0.200213  0.348455 -0.613294
AMID-1006  2.340943 -1.800818  0.667911
AMID-1007  0.412372  0.326088 -1.456467
AMID-1008 -0.659357  1.541636 -0.405293
AMID-1009 -0.423322 -1.411532 -1.029181

如果你想reset_index()作为一列而不是索引,你可以AMID,但恕我直言它作为一个索引更好(我假设你想在以后适合另一个模型......)