我正试图PCA
sklearn
与n_components = 5
进行fit_transform(data)
。我使用pca.components_
对我的数据应用降维。
最初我尝试在x_features
值和fit_transform
数据之间进行经典矩阵乘法,但结果不同。所以我不能正确地进行乘法运算,或者我不明白fit_transform
如何运作。
下面是比较经典矩阵乘法和import numpy as np
from sklearn import decomposition
np.random.seed(0)
my_matrix = np.random.randn(100, 5)`
mdl = decomposition.PCA(n_components=5)
mdl_FitTrans = mdl.fit_transform(my_matrix)
pca_components = mdl.components_
mdl_FitTrans_manual = np.dot(pca_components, my_matrix.transpose())
mdl_FitTrans_manualT = mdl_FitTrans_manual.transpose()
的模型:
mdl_FitTrans == mdl_FitTrans_manual
我期待False
,但结果是std::ifstream
。
答案 0 :(得分:0)
查看,如何在sklearn中实施transform()
方法:https://github.com/scikit-learn/scikit-learn/blob/a5ab948/sklearn/decomposition/base.py#L101
根据它,手动减少如下:
import numpy as np
from sklearn import decomposition
np.random.seed(0)
data = np.random.randn(100, 100)
mdl = decomposition.PCA(n_components=5)
mdl_fit = mdl.fit(data)
data_transformed = mdl_fit.transform(data)
data_transformed_manual = np.dot(data - mdl_fit.mean_, mdl.components_.T)
np.all(data_transformed == data_transformed_manual)
True