在Keras中重塑图像数据以匹配CNN要求

时间:2016-12-01 21:21:09

标签: deep-learning keras

我创建了一个用于识别物体的CNN。

from keras.preprocessing.image import img_to_array, load_img

img = load_img('newimage.jpg')
x = img_to_array(img)
x = x.reshape( (1,) + x.shape )
scores = model.predict(x, verbose=1)
print(scores)

但是我得到了:

expected convolution2d_input_1 to have shape (None, 3, 108, 192) but got array with shape (1, 3, 192, 108)

我的模特:

def create_model():
    model = Sequential()
    model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))

    model.add(Dense(1))
    model.add(Dense(3, activation='softmax'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    return model

我已经查看了相关的答案和文档,但不知道如何重塑阵列以匹配预期的内容?

1 个答案:

答案 0 :(得分:1)

我想问题是设置图像的宽度和高度。正如错误所说:

expected convolution2d_input_1 to have shape (None, 3, 108, 192) # expected width = 108 and height = 192 
but got array with shape (1, 3, 192, 108) # width = 192, height = 108
  

更新:我通过一个小小的改动测试了你的代码并且它有效!

我只是更改了一行:

img_width, img_height = 960, 717
model.add(Convolution2D(32, 3, 3, input_shape=(img_height, img_width, 3)))

这是主要变化 - input_shape=(img_height, img_width, 3)

我用来运行此代码的图片是width = 960height = 717。我已经更新了我之前的答案,因为答案的某些部分是错误的!对不起。