基于索引向量从列表中提取元素

时间:2016-11-27 15:48:21

标签: r mapply

我想根据存储在单独向量中的索引从列表中提取元素。

这是我的尝试:

list_positions<-c(2,3,4)
my_list<-list(c(1,3,4),c(2,3,4,5,6),c(1,2,3,4,6))

my_fun<-function(x,y){
  x[y]
}

mapply(my_fun,x=my_list,y=list_positions)

也许有人可以提出更快的解决方案。我的名单有大约1400万个元素。我尝试了并行解决方案,而不是使用mapply我使用了clusterMap,但我仍希望有更好的性能。

2 个答案:

答案 0 :(得分:3)

我们可以unlist list,根据“my_list”的lengths创建索引并提取vector

v1 <- unlist(my_list)
p1 <- list_positions
v1[cumsum(lengths(my_list))- (lengths(my_list)-p1)]
#[1] 3 4 4

基准

set.seed(24)
lst <- lapply(1:1e6, function(i) sample(1:10, sample(2:5), replace=FALSE))
p2 <- sapply(lst, function(x) sample(length(x), 1))
system.time({
r1 <- mapply(`[`, lst, p2)
 })
#user  system elapsed 
#   1.84    0.02    1.86 

system.time( r4 <-  mapply(my_fun, lst, p2) )
#   user  system elapsed 
#   1.88    0.01    1.89 
system.time({ r4 <-  mapply(my_fun, lst, p2) }) #placing inside the {}
#   user  system elapsed 
#   2.31    0.00    2.31 


system.time({ ##cccmir's function
  r3 <- mapply(my_func1, lst, p2)
})
#   user  system elapsed 
#  12.10    0.03   12.13 


system.time({
v2 <- unlist(lst)
r2 <- v2[cumsum(lengths(lst))- (lengths(lst)-p2)]
})
#  user  system elapsed 
#   0.14    0.00    0.14 
identical(r1, r2)
#[1] TRUE

答案 1 :(得分:2)

在这种情况下你应该使用for循环,例如:

 library(microbenchmark)
    list_positions<-c(2,3,4)
    my_list<-list(c(1,3,4),c(2,3,4,5,6),c(1,2,3,4,6))

    my_fun<-function(x,y){
        x[y]
    }

    mapply(my_fun,x=my_list,y=list_positions)

    my_func1 <- function(aList, positions){
        res <- numeric(length(aList))

        for(i in seq_along(aList)) {
            res[i] <- aList[[i]][positions[i]]
        }
        return(res)
    }


my_func2 <- function(aList, positions) {
    v1 <- unlist(aList)
    p1 <- positions
    v1[cumsum(lengths(my_list))- (lengths(my_list)-p1)]
}

microbenchmark(mapply(my_fun,x=my_list,y=list_positions), my_func1(my_list, list_positions), my_func2(my_list, list_positions), times = 1000)

#Unit: microseconds
#                                           expr    min     lq      mean median     uq     max neval
#mapply(my_fun, x = my_list, y = list_positions) 12.764 13.858 17.453172 14.588 16.775 119.613  1000
#               my_func1(my_list, list_positions)  5.106  5.835  7.328412  6.200  6.929  38.292  1000
#               my_func2(my_list, list_positions)  2.553  3.282  4.337367  3.283  3.648  52.514  1000

@akrun解决方案是最快的