我一直在尝试为Akka流设置一些仪器。有了它的工作,但是,即使我将所有流量命名为流的一部分,我仍然会在指标中得到这样的名称:flow-0-0-unknown-operation
我正在尝试做的一个简单示例:
val myflow = Flow[String].named("myflow").map(println)
Source.via(myflow).to(Sink.ignore).run()
我基本上希望看到为“myflow”创建的Actor的指标,并使用正确的名称。
这甚至可能吗?我错过了什么吗?
答案 0 :(得分:0)
我在项目中遇到了挑战,并通过使用Kamon + Prometheus解决了问题。但是,我必须创建一个Akka流Flow
,可以设置其名称metricName
并使用val kamonThroughputGauge: Metric.Gauge
从中导出度量值。
class MonitorProcessingTimerFlow[T](interval: FiniteDuration)(metricName: String = "monitorFlow") extends GraphStage[FlowShape[T, T]] {
val in = Inlet[T]("MonitorProcessingTimerFlow.in")
val out = Outlet[T]("MonitorProcessingTimerFlow.out")
Kamon.init()
val kamonThroughputGauge: Metric.Gauge = Kamon.gauge("akka-stream-throughput-monitor")
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new TimerGraphStageLogic(shape) {
// mutable state
var open = false
var count = 0
var start = System.nanoTime
setHandler(in, new InHandler {
override def onPush(): Unit = {
try {
push(out, grab(in))
count += 1
if (!open) {
open = true
scheduleOnce(None, interval)
}
} catch {
case e: Throwable => failStage(e)
}
}
})
setHandler(out, new OutHandler {
override def onPull(): Unit = {
pull(in)
}
})
override protected def onTimer(timerKey: Any): Unit = {
open = false
val duration = (System.nanoTime - start) / 1e9d
val throughput = count / duration
kamonThroughputGauge.withTag("name", metricName).update(throughput)
count = 0
start = System.nanoTime
}
}
override def shape: FlowShape[T, T] = FlowShape[T, T](in, out)
}
然后,我创建了一个简单的流,该流使用MonitorProcessingTimerFlow
导出指标:
implicit val system = ActorSystem("FirstStreamMonitoring")
val source = Source(Stream.from(1)).throttle(1, 1 second)
/** Simulating workload fluctuation: A Flow that expand the event to a random number of multiple events */
val flow = Flow[Int].extrapolate { element =>
Stream.continually(Random.nextInt(100)).take(Random.nextInt(100)).iterator
}
val monitorFlow = Flow.fromGraph(new MonitorProcessingTimerFlow[Int](5 seconds)("monitorFlow"))
val sink = Sink.foreach[Int](println)
val graph = source
.via(flow)
.via(monitorFlow)
.to(sink)
graph.run()
在application.conf
进行了正确的配置:
kamon.instrumentation.akka.filters {
actors.track {
includes = [ "FirstStreamMonitoring/user/*" ]
}
}