鉴于BST,我需要找到树的左节点数。
示例:`
+---+
| 3 |
+---+
/ \
+---+ +---+
| 5 | | 2 |
+---+ +---+
/ / \
+---+ +---+ +---+
| 1 | | 4 | | 6 |
+---+ +---+ +---+
/
+---+
| 7 |
+---+`
答案应该是4,因为(5,1,4,7)都是树的左边节点。
我在想的是:
public int countLeftNodes() {
return countLeftNodes(overallRoot, 0);
}
private int countLeftNodes(IntTreeNode overallRoot, int count) {
if (overallRoot != null) {
count += countLeftNodes(overallRoot.left, count++);
count = countLeftNodes(overallRoot.right, count);
}
return count;
}
我知道这是错的,但我不知道为什么。有人可以解释原因,并帮助我解答答案。
答案 0 :(得分:6)
第二个递归分支将覆盖第一个递归分支。你也应该为左根添加1。
类似的东西:
private int countLeftNodes(IntTreeNode node) {
int count = 0;
if (node.left != null)
count += 1 + countLeftNodes(node.left);
if (node.right != null)
count += countLeftNodes(node.right);
return count;
}
答案 1 :(得分:3)
不需要在调用堆栈中传播累加器(count
参数),因为您不依赖于尾递归。
public int countLeftNodes(IntTreeNode node) {
// This test is only needed if the root node can be null.
if (node == null) return 0;
int count = 0;
if (node.left != null) {
count += 1 + countLeftNodes(node.left);
}
if (node.right != null) {
count += countLeftNodes(node.right);
}
return count;
}
答案 2 :(得分:1)
在你的第二行
count += countLeftNodes(overallRoot.left, count++);
count = countLeftNodes(overallRoot.right, count);
您丢弃之前的计数值。也许它应该是+=
而不是=
。
private int countLeftNodes(IntTreeNode root) {
return (root.left == null ? 0 : countLeftNodes(root.left) + 1) +
(root.right == null ? 0 : countLeftNodes(root.right));
}
答案 3 :(得分:0)
我认为你必须重新调整你的代码。
,而不是传递左节点的当前计数,只需从两个孩子那里接收它答案 4 :(得分:0)
我认为最优雅的解决方案就是这个。是的,当然我有偏见。我是人类: - )
def countLeft (node,ind):
if node == null: return 0
return ind + countLeft (node->left, 1) + countLeft (node->right, 0)
total = countLeft (root, 0)
通过传递左节点的指示符,它简化了必须传递的内容。下图显示了传递的每个总和 - 从底部开始,每个空值向上传递0.
左边的每个节点向上传递1加上来自下面两个分支的任何东西。右边的每个节点向上传递0加上来自下面两个分支的任何东西。
root没有添加任何东西,因为它既不是左边节点也不是右边节点(它的处理方式与右边节点相同)。
4
^
|
+---+
| 3 |
__________+---+__________
/2 2\
+---+ +---+
| 5 | | 2 |
+---+ +---+
/1 /2 0\
+---+ +---+ +---+
| 1 | | 4 | | 6 |
+---+ +---+ +---+
/0 0\ /1 0\ /0 0\
+---+
| 7 |
+---+
/0 0\
您可以在此完整程序中查看操作:
#include <stdio.h>
typedef struct sNode { int val; struct sNode *left, *right; } tNode;
#define setNode(N,V,L,R) N.val = V; N.left = L; N.right = R
int countLeft (tNode *node, int ind) {
if (node == NULL) return 0;
int x = ind + countLeft (node->left, 1) + countLeft (node->right, 0);
printf ("Node %d passing up %d\n", node->val, x);
return x;
}
int main (void) {
tNode n3, n5, n1, n2, n4, n6, n7;
setNode (n3, 3, &n5, &n2);
setNode (n5, 5, &n1, NULL);
setNode (n1, 1, NULL, NULL);
setNode (n2, 2, &n4, &n6);
setNode (n4, 4, &n7, NULL);
setNode (n7, 7, NULL, NULL);
setNode (n6, 6, NULL, NULL);
printf ("countLeft is %d\n", countLeft (&n3, 0));
return 0;
}
输出调试行:
Node 1 passing up 1
Node 5 passing up 2
Node 7 passing up 1
Node 4 passing up 2
Node 6 passing up 0
Node 2 passing up 2
Node 3 passing up 4
countLeft is 4
countLeft
函数的非调试版本与本答案开头的伪代码一样简单:
int countLeft (tNode *node, int ind) {
if (node == NULL) return 0;
return ind + countLeft (node->left, 1) + countLeft (node->right, 0);
}
答案 5 :(得分:0)
计算左节点的函数(只有左子节点: 您可以使用递归方法做些什么,如果只存在左孩子,则返回 1。
int count_left_nodes(tree_type* root)
{
if(root == NULL)
return 0;
if(root->left != NULL && root->right==NULL)
return 1;
else
return count_left_nodes(root->left)+
count_left_nodes(root->right);
}