我有两个稀疏矩阵(由sklearn
HashVectorizer
创建,来自两组功能 - 每组都对应一个功能)。我想将它们连接起来以便以后使用它们进行聚类。但是,我面临尺寸问题,因为两个矩阵没有相同的行尺寸。
以下是一个例子:
Xa = [-0.57735027 -0.57735027 0.57735027 -0.57735027 -0.57735027 0.57735027
0.5 0.5 -0.5 0.5 0.5 -0.5 0.5
0.5 -0.5 0.5 -0.5 0.5 0.5 -0.5
0.5 0.5 ]
Xb = [-0.57735027 -0.57735027 0.57735027 -0.57735027 0.57735027 0.57735027
-0.5 0.5 0.5 0.5 -0.5 -0.5 0.5
-0.5 -0.5 -0.5 0.5 0.5 ]
Xa
和Xb
都属于<class 'scipy.sparse.csr.csr_matrix'>
类型。形状为Xa.shape = (6, 1048576) Xb.shape = (5, 1048576)
。我得到的错误是(我现在知道它为什么会发生):
X = hstack((Xa, Xb))
File "/usr/local/lib/python2.7/site-packages/scipy/sparse/construct.py", line 464, in hstack
return bmat([blocks], format=format, dtype=dtype)
File "/usr/local/lib/python2.7/site-packages/scipy/sparse/construct.py", line 581, in bmat
'row dimensions' % i)
ValueError: blocks[0,:] has incompatible row dimensions
有没有办法堆叠稀疏矩阵,尽管它们的尺寸不规则?也许有一些填充?
我查看了这些帖子:
答案 0 :(得分:4)
您可以使用空稀疏矩阵填充它。
您希望水平叠加,因此您需要填充较小的矩阵,使其与较大的矩阵具有相同的行数。为此,垂直堆叠,形状为(difference in number of rows, number of columns of original matrix)
矩阵。
像这样:
from scipy.sparse import csr_matrix
from scipy.sparse import hstack
from scipy.sparse import vstack
# Create 2 empty sparse matrix for demo
Xa = csr_matrix((4, 4))
Xb = csr_matrix((3, 5))
diff_n_rows = Xa.shape[0] - Xb.shape[0]
Xb_new = vstack((Xb, csr_matrix((diff_n_rows, Xb.shape[1]))))
#where diff_n_rows is the difference of the number of rows between Xa and Xb
X = hstack((Xa, Xb_new))
X
结果是:
<4x9 sparse matrix of type '<class 'numpy.float64'>'
with 0 stored elements in COOrdinate format>