假设丢失和训练如下:
cross_entropy = tf.mul(diff, diff)
train = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy)
我想在训练步骤中获得权重和偏见,例如:
for i in range(1000):
sess.run(train)
if cross_entropy == (specific value like 0.1, 0.05):
print(weight)
print(bias)
有没有办法在Tensorflow中实现它?
答案 0 :(得分:1)
是。最简单的方法是在一个run
中评估所有操作并在python中运行结果(我假设weight
和bias
是操作,如果没有,则需要从图层中提取它们):
for i in range(1000):
_, w_val, b_val, ce_val = sess.run([train, weight, bias, cross_entropy])
if ce_val == 0.005:
print(w_val)
print(b_val)