Tensorflow如何在训练步骤中获得价值

时间:2016-11-21 17:20:56

标签: python tensorflow

假设丢失和训练如下:

cross_entropy = tf.mul(diff, diff)
train = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy)

我想在训练步骤中获得权重和偏见,例如:

  for i in range(1000):
    sess.run(train)
        if cross_entropy == (specific value like 0.1, 0.05):
            print(weight)
            print(bias)

有没有办法在Tensorflow中实现它?

1 个答案:

答案 0 :(得分:1)

是。最简单的方法是在一个run中评估所有操作并在python中运行结果(我假设weightbias是操作,如果没有,则需要从图层中提取它们):

for i in range(1000):
   _, w_val, b_val, ce_val = sess.run([train, weight, bias, cross_entropy])
       if ce_val == 0.005:
           print(w_val)
           print(b_val)