我认为自己是一个经验丰富的numpy用户,但我无法找到解决以下问题的方法。假设有以下数组:
# sorted array of times
t = numpy.cumsum(numpy.random.random(size = 100))
# some values associated with the times
x = numpy.random.random(size=100)
# some indices into the time/data array
indices = numpy.cumsum(numpy.random.randint(low = 1, high=10,size = 20))
indices = indices[indices <90] # respect size of 100
if len(indices) % 2: # make number of indices even
indices = indices[:-1]
# select some starting and end indices
istart = indices[0::2]
iend = indices[1::2]
我现在想要的是在给定由x
和istart
表示的区间的情况下减少值数组iend
。即。
# e.g. use max reduce, I'll probably also need mean and stdv
what_i_want = numpy.array([numpy.max(x[is:ie]) for is,ie in zip(istart,iend)])
我已经搜索了很多,但我能找到的只是通过stride_tricks
的块运算,它只允许常规块。没有执行pyhthon循环我无法找到解决方案:-(
在我真正的应用程序中,数组要大得多,性能也很重要,所以我暂时使用numba.jit
。
我是否缺少能够做到的任何numpy功能?
答案 0 :(得分:7)
你看过ufunc.reduceat
了吗?使用np.maximum
,您可以执行以下操作:
>>> np.maximum.reduceat(x, indices)
产生切片x[indices[i]:indices[i+1]]
的最大值。为了得到你想要的东西(x[indices[2i]:indices[2i+1]
),你可以做到
>>> np.maximum.reduceat(x, indices)[::2]
如果你不介意x[inidices[2i-1]:indices[2i]]
的额外计算。这产生以下结果:
>>> numpy.array([numpy.max(x[ib:ie]) for ib,ie in zip(istart,iend)])
array([ 0.60265618, 0.97866485, 0.78869449, 0.79371198, 0.15463711,
0.72413702, 0.97669218, 0.86605981])
>>> np.maximum.reduceat(x, indices)[::2]
array([ 0.60265618, 0.97866485, 0.78869449, 0.79371198, 0.15463711,
0.72413702, 0.97669218, 0.86605981])
答案 1 :(得分:0)
您可以使用numpy.r_
像这样:
what_i_want = np.array([np.max(x[np.r_[ib:ie]]) for ib,ie in zip(istart,iend)])
答案 2 :(得分:0)