我是TensorFlow和机器学习的新手。我试图将两个物体分类为杯子和pendrive(jpeg图像)。我成功地训练并导出了一个model.ckpt。现在我正在尝试恢复已保存的model.ckpt以进行预测。这是脚本:
addr, _ := net.ResolveTCPAddr("tcp", "172.29.4.175:0")
当我运行上面的脚本进行预测时,我收到以下错误:
import tensorflow as tf
import math
import numpy as np
from PIL import Image
from numpy import array
# image parameters
IMAGE_SIZE = 64
IMAGE_CHANNELS = 3
NUM_CLASSES = 2
def main():
image = np.zeros((64, 64, 3))
img = Image.open('./IMG_0849.JPG')
img = img.resize((64, 64))
image = array(img).reshape(64,64,3)
k = int(math.ceil(IMAGE_SIZE / 2.0 / 2.0 / 2.0 / 2.0))
# Store weights for our convolution and fully-connected layers
with tf.name_scope('weights'):
weights = {
# 5x5 conv, 3 input channel, 32 outputs each
'wc1': tf.Variable(tf.random_normal([5, 5, 1 * IMAGE_CHANNELS, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# 5x5 conv, 64 inputs, 128 outputs
'wc3': tf.Variable(tf.random_normal([5, 5, 64, 128])),
# 5x5 conv, 128 inputs, 256 outputs
'wc4': tf.Variable(tf.random_normal([5, 5, 128, 256])),
# fully connected, k * k * 256 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([k * k * 256, 1024])),
# 1024 inputs, 2 class labels (prediction)
'out': tf.Variable(tf.random_normal([1024, NUM_CLASSES]))
}
# Store biases for our convolution and fully-connected layers
with tf.name_scope('biases'):
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bc3': tf.Variable(tf.random_normal([128])),
'bc4': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([NUM_CLASSES]))
}
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "./model.ckpt")
print "...Model Loaded..."
x_ = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE , IMAGE_SIZE , IMAGE_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
keep_prob = tf.placeholder(tf.float32)
init = tf.initialize_all_variables()
sess.run(init)
my_classification = sess.run(tf.argmax(y_, 1), feed_dict={x_:image})
print 'Neural Network predicted', my_classification[0], "for your image"
if __name__ == '__main__':
main()
我做错了什么?我如何修复numpy数组的形状?
答案 0 :(得分:33)
image
的形状为(64,64,3)
。
您的输入占位符_x
的形状为(?, 64,64,3)
。
问题在于您为占位符提供了不同形状的值。
您必须使用(1, 64, 64, 3)
=一批1张图片来提供它。
只需将image
值重新整形为大小为1的批次。
image = array(img).reshape(1, 64,64,3)
P.S:输入占位符接受一批图像,这意味着您可以并行运行一批图像的预测。
您可以尝试读取多个图像(N个图像),然后使用形状为(N, 64,64,3)
的张量构建一批N图像
答案 1 :(得分:5)