我有一个简单的Pandas
dataframe
,其中每一行代表一个人和一个日期范围。对于每个人,我想知道period_start
中各个条目涵盖硬编码范围(由变量period_end
和dataframe
定义)的天数百分比。
我假设有一种简单的方法可以使用Pandas
执行此操作,但我找不到一个。我有一个包含多个dataframes
和几个嵌套循环的解决方案,但这在规模上效率很低。如何更有效地利用Pandas
来做到这一点?我认为groupby
是有意义的,但是当范围跨越两列并且可能重叠时,不确定如何做到这一点。
import pandas as pd
from datetime import datetime
df = pd.DataFrame(data=[['2016-01-01', '2016-01-31', 'A'],
['2016-02-02', '2016-02-10', 'A'],
['2016-03-01', '2016-04-01', 'A'],
['2016-01-01', '2016-03-01', 'B']],
columns=['startdate', 'enddate', 'person'])
# start and end date
period_start = datetime(year=2016, month=01, day=01)
period_end = datetime(year=2016, month=12, day=31)
# dates_dfculate totals days
total_days = (period_end-period_start).days + 1
# convert columns to dates
df['startdate']= pd.to_datetime(df['startdate'], format='%Y-%m-%d')
df['enddate']= pd.to_datetime(df['enddate'], format='%Y-%m-%d')
# create a TimeIndex dataframe with columns for each person
rng = pd.date_range(period_start, periods=total_days, freq='D')
people = list(set(df['person'].tolist()))
dates_df = pd.DataFrame(columns=[people], index=rng).fillna(False)
# loop over each date (index)
for index, row in dates_df.iterrows():
# loop over each column (person)
for person in people:
tmp = df[df['person'] == person]
# loop over each each entry for the person
for index1, row1 in tmp.iterrows():
# check if the date is date index in dates_df is within range
value = row1['startdate'] <= index <= row1['enddate']
# if it's not already set to true, set it to true
if dates_df.ix[index, person] == False and value == True:
dates_df.ix[index, person] = True
# for each person, show the percentage of days in range that are covered
for person in people:
print person, sum(dates_df[person].tolist())/float(total_days)
期望的输出:
A 0.196721311475
B 0.166666666667
答案 0 :(得分:1)
这应该是它,我猜你是因为你想要在范围内包含总数的1,但是根据需要进行编辑:)
import pandas as pd
from datetime import datetime
df = pd.DataFrame(data=[['2016-01-01', '2016-01-31', 'A'],
['2016-02-02', '2016-02-10', 'A'],
['2016-03-01', '2016-04-01', 'A'],
['2016-01-01', '2016-03-01', 'B']],
columns=['startdate', 'enddate', 'person'])
# start and end date
period_start = datetime(year=2016, month=1, day=1)
period_end = datetime(year=2016, month=12, day=31)
# convert columns to dates
df['startdate']= pd.to_datetime(df['startdate'], format='%Y-%m-%d')
df['enddate']= pd.to_datetime(df['enddate'], format='%Y-%m-%d')
df['days'] = df.apply(lambda x: max((min(x.enddate, period_end) - max(x.startdate, period_start)).days + 1, 0), axis=1)
#percentage of days in range by person
people_pct = df.groupby('person').apply(lambda x: x.days.sum() / ((period_end - period_start).days + 1))
print(people_pct.head())
-----------------
person
A 0.196721
B 0.166667
你走在正确的轨道上 - pandas groupby
非常适合分割数据,但真正的力量来自.apply()
函数,它可以进行常见的数学转换(mean,std,等),或者,在这种情况下,自定义功能。
应用中的lambda
说“对于组内的每一行/列(取决于axis
),执行此自定义函数并返回Series
”。
虽然这涵盖了您的问题,但它仍然缺乏检测独特日期,所以我们假设行被分割而没有重叠,如您所示。