我是张力流的菜鸟。所以我正在玩Xor问题我的问题是你如何在tensorflow中预测。因此,当我输入[1,0]时,我希望它给我1或0.另外在不同的场景中,如果它是具有多个值(回归量)的模型,例如股票。我该怎么做谢谢你。 到目前为止,我到目前为止:
const initialState = [
{
id: 1,
clientFirstName: 'Paul',
...otherFields
},
{
id: 2,
clientFirstName: 'Adam',
...otherFields
}
];
// Reducers
function clientSubReducer(state = initialState, action) {
switch(action.type) {
case 'MODIFY_CLIENT':
return {
...state[action.payload.index],
...action.payload.fields
}
}
}
export function clientReducer(state, action) {
switch(action.type) {
case 'MODIFY_CLIENT':
return [
...state.slice(0, action.payload.index),
clientSubReducer(state, action),
...state.slice(action.payload.index + 1)
]
}
}
//Action
function modifyClient(client) {
return (dispatch, getStore) => {
const store = getStore();
let storeIndex = -1;
for (let i = 0; i < store.clients.length; i++) {
const storeClient = clients[i];
if (client.id === storeClient.id) {
storeIndex = i;
}
}
// Our store contains the client object
if (storeIndex > -1) {
dispatch({
action: 'MODIFY_CLIENT',
payload: {
index: storeIndex,
fields: client // You could diff the client and store client and pass only the ones you want to modify back
}
})
}
//Our Store does not contain the client object
else {
dispatch({
action: 'ADD_CLIENT',
payload: {
client: client
}
})
}
}
}
答案 0 :(得分:1)
由于您的分类只是0 iff输出<0.5,您可以添加新的预测节点:
prediction_op = tf.round(Output)
之后再打电话
print(sess.run(prediction_op, feed_dict={X: np.array([[1., 0.]])}))