我已经实现了朴素算法来计算Java和Python中给定斜边长度的所有毕达哥拉斯三元组。出于某种原因,Python实现需要大约20倍的时间。为什么会这样?
$ time python PythagoreanTriples.py
[2800, 9600, 3520, 9360, 5376, 8432, 6000, 8000, 8000, 6000, 8432, 5376, 9360, 3520, 9600, 2800]
python PythagoreanTriples.py 13.92s user 0.71s system 87% cpu 16.698 total
$ time java PythagoreanTriples
[2800, 9600, 3520, 9360, 5376, 8432, 6000, 8000, 8000, 6000, 8432, 5376, 9360, 3520, 9600, 2800]
java PythagoreanTriples 0.32s user 0.12s system 72% cpu 0.618 total
该算法将a
和b
值按a
值的升序和b
值的降序添加到输出列表中。以下是Python和Java程序。
的Python:
def pythagorean_triples(c):
"""
:param c: the length of the hypotenuse
:return: a list containing all possible configurations of the other two
sides that are of positive integer length. Output each
configuration as a separate element in a list in the format a b
where a is in ascending order and b is in descending order in
respect to the other configurations.
"""
output = []
c_squared = c * c
for a in xrange(1, c):
a_squared = a * a
for b in xrange(1, c):
b_squared = b * b
if a_squared + b_squared == c_squared:
output.append(a)
output.append(b)
return output
爪哇:
public static Iterable<Integer> findTriples(int hypotenuse) {
ArrayList<Integer> output = new ArrayList<Integer>();
int c_2 = hypotenuse * hypotenuse;
for(int a = 1; a < hypotenuse; a++) {
int a_2 = a * a;
for(int b = 1; b < hypotenuse; b++) {
int b_2 = b * b;
if(a_2 + b_2 == c_2) {
output.add(a);
output.add(b);
}
}
}
return output;
}
答案 0 :(得分:1)
似乎大部分时间花在进行乘法运算上:
因为替换
output = []
c_squared = c * c
for a in xrange(1, c):
a_squared = a * a
for b in xrange(1, c):
b_squared = b * b
if a_squared + b_squared == c_squared:
output.append(a)
output.append(b)
return output
通过
all_b_squared = [b*b for b in xrange(1,c)]
output = []
c_squared = c * c
for a in xrange(1, c):
a_squared = a * a
for b_squared in all_b_squared:
if a_squared + b_squared == c_squared:
output.append(a)
output.append(math.b)
return output
我的电脑上的显示了性能的显着提升
还要注意(在我的电脑上)
a**2
代替a*a
明显更慢我建议您vprof
和pprofile
(pip install vprof
)逐行分析您的方法
可以解释一下,因为python中的int
是一个完整的对象而不仅是你的ram中的32位变量,它不会溢出,与java整数相反。
答案 1 :(得分:0)
Python不是用于数字运算,但是使用更快的算法可以在几毫秒内解决问题:
def pythagorean_triples(c):
"""
:param c: the length of the hypotenuse
:return: a list containing all possible configurations of the other two
sides that are of positive integer length. Output each
configuration as a separate element in a list in the format a b
where a is in ascending order and b is in descending order in
respect to the other configurations.
"""
output = []
c_squared = c * c
for a in xrange(1, c):
a_squared = a * a
b = int(round((c_squared - a_squared) ** 0.5))
b_squared = b * b
if a_squared + b_squared == c_squared:
output.append(a)
output.append(b)
return output