我想做一个由运算符XOR确定的回归。我创建了一套训练集:
然后我创建了一个测试集:
我使用此代码:
import numpy as np
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
data_train = np.loadtxt('1.csv', delimiter=';')
data_test = np.loadtxt('2.csv', delimiter=';')
X = data_train[:, 1:]
y = data_train[:, 0].astype(np.int)
model = LogisticRegression()
model.fit(X, y)
expected = y
predicted = model.predict(X)
#print(metrics.classification_report(expected, predicted))
#print(metrics.confusion_matrix(expected, predicted))
print(model.predict_proba(data_test))
但我有这个警告:
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.
'precision', 'predicted', average, warn_for)
这个错误:
ValueError: X has 3 features per sample; expecting 2
但我只有2岁。 如果我做错了,告诉:)。我是新来的