如何计算每个不同组的聚合数据的平均时间?

时间:2016-10-21 10:35:17

标签: r

我有以下数据框,这个问题与[此主题]

有关
df = data.frame(c("2012","2012","2012","2013"),
                c("AAA","BBB","AAA","AAA"),
                c("X","Not-serviced","X","Y"),
                c("2","10","3","2.5"))

colnames(df) = c("year","type","service_type","waiting_time")

我想获得服务和非服务组的平均等待时间。这就是数据分组的方式:

library(data.table)
setDT(df)[, .(num_serviced = sum(service_type != "Not-serviced"), 
      num_notserviced = sum(service_type =="Not_serviced"),
      avg_wt = mean(waiting_time)), ## THE PROBLEM HERE!!!
     .(year, type)][, Total := num_serviced + num_notserviced][]

avg_wt = mean(waiting_time))估计平均等待时间超过总计。我宁愿需要avg_wt_servicedavg_wt_notserviced

结果必须是:

year  type num_serviced num_notserviced num_total avg_wt_serviced  avg_wt_notserviced
2012  AAA  2            0               2         2.5              0

3 个答案:

答案 0 :(得分:2)

使用dplyr,我们可以使用mean

library(dplyr)
df %>%
   group_by(year,type) %>%
   summarise(num_serviced = sum(service_type != "Not-serviced"), 
             num_notserviced = sum(service_type == "Not-serviced"),
             num_total = num_serviced + num_notserviced, 
             avg_wt_serv = mean(waiting_time[service_type != "Not-serviced"]),
             avg_wt_notser = mean(waiting_time[service_type == "Not-serviced"]))


#   year  type num_serviced num_notserviced num_total avg_wt_serv  avg_wt_notser
#   <fctr> <fctr>   <int>           <int>     <int>      <dbl>         <dbl>
#1   2012    AAA       2               0         2        2.5            NaN
#2   2012    BBB       0               1         1        NaN            10
#3   2013    AAA       1               0         1        2.5            NaN

答案 1 :(得分:2)

这里是: 在您的数据框中,等待时间必须是能够使用mean的数字,请参阅as.numeric()进行转换。

df = data.frame(c("2012","2012","2012","2013"),
                c("AAA","BBB","AAA","AAA"),
                c("X","Not-serviced","X","Y"),
                c(2,10,3,2.5))

colnames(df) = c("year","type","service_type","waiting_time")

library(data.table)
setDT(df)[, .(num_serviced = sum(service_type != "Not-serviced"), 
              num_notserviced = sum(service_type =="Not-serviced"),
              avg_wt_serviced = ifelse(service_type != "Not-serviced",mean(waiting_time),0),
              avg_wt_notserviced = ifelse(service_type == "Not-serviced",mean(waiting_time),0)), 
          .(year, type)][, Total := num_serviced + num_notserviced][]

答案 2 :(得分:0)

问题似乎在于引用的列。 编辑/添加:由于引号,colummn被读作因子变量。见class(df$waiting_time)

在计算之前添加此行为我提供了正确的答案。

df$waiting_time<- as.numeric(as.character(df$waiting_time))