"设备上没有剩余空间"拟合Sklearn模型时出错

时间:2016-10-18 18:00:41

标签: python multithreading scikit-learn ioerror

我使用scikit-learn为LDA模型拟合了大量数据。相关代码段如下所示:

lda = LatentDirichletAllocation(n_topics = n_topics, 
                                max_iter = iters,
                                learning_method = 'online',
                                learning_offset = offset,
                                random_state = 0,
                                evaluate_every = 5,
                                n_jobs = 3,
                                verbose = 0)
lda.fit(X)

(我想这里唯一可能相关的细节是我使用多个工作。)

过了一段时间我才得到"设备上没有空间"错误,即使磁盘上有足够的空间和充足的可用内存。我在两台不同的计算机上(在我的本地计算机和远程服务器上)多次尝试相同的代码,首先使用python3,然后使用python2,每次我都得到相同的错误。

如果我在较小的数据样本上运行相同的代码,一切正常。

整个堆栈跟踪:

Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 271, in save
    obj, filename = self._write_array(obj, filename)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 231, in _write_array
    self.np.save(filename, array)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/npyio.py", line 491, in save
    pickle_kwargs=pickle_kwargs)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/format.py", line 584, in write_array
    array.tofile(fp)
IOError: 275500 requested and 210934 written


IOErrorTraceback (most recent call last)
<ipython-input-7-6af7e7c9845f> in <module>()
      7                                 n_jobs = 3,
      8                                 verbose = 0)
----> 9 lda.fit(X)

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in fit(self, X, y)
    509                     for idx_slice in gen_batches(n_samples, batch_size):
    510                         self._em_step(X[idx_slice, :], total_samples=n_samples,
--> 511                                       batch_update=False, parallel=parallel)
    512                 else:
    513                     # batch update

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _em_step(self, X, total_samples, batch_update, parallel)
    403         # E-step
    404         _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
--> 405                                      parallel=parallel)
    406 
    407         # M-step

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _e_step(self, X, cal_sstats, random_init, parallel)
    356                                               self.mean_change_tol, cal_sstats,
    357                                               random_state)
--> 358             for idx_slice in gen_even_slices(X.shape[0], n_jobs))
    359 
    360         # merge result

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
    808                 # consumption.
    809                 self._iterating = False
--> 810             self.retrieve()
    811             # Make sure that we get a last message telling us we are done
    812             elapsed_time = time.time() - self._start_time

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
    725                 job = self._jobs.pop(0)
    726             try:
--> 727                 self._output.extend(job.get())
    728             except tuple(self.exceptions) as exception:
    729                 # Stop dispatching any new job in the async callback thread

/home/ubuntu/anaconda2/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
    565             return self._value
    566         else:
--> 567             raise self._value
    568 
    569     def _set(self, i, obj):

IOError: [Errno 28] No space left on device

5 个答案:

答案 0 :(得分:32)

/dev/shm有同样的问题。看来,当您运行df -h时,您的共享内存不足(JOBLIB_TEMP_FOLDER)。尝试将/tmp环境变量设置为不同的内容:例如import os import csv from itertools import chain from collections import defaultdict def get_file_values(find_files, output_name): for root, dirs, files in os.walk(os.getcwd()): if all(x in files for x in find_files): outputs = [] for f in find_files: d = {} with open(os.path.join(root, f), 'r') as f1: for line in f1: ta = line.split() d[ta[1]] = int(ta[0]) outputs.append(d) d3 = defaultdict(list) for k, v in chain(*(d.items() for d in outputs)): d3[k].append(v) with open(os.path.join(root, output_name), 'w+') as fnew: fnew.write(os.path.realpath(root)) writer = csv.writer(fnew) for k, v in d3.items(): writer.writerow([k] + v) get_file_values(['genes.gff.genespercontig.csv', 'hmmer.analyze.txt.results.txt'], 'output_contigsvsgenes.csv') 。在我的情况下,它解决了这个问题。

或者只是增加共享内存的大小,如果您拥有正在训练LDA的计算机的相应权限。

答案 1 :(得分:6)

当使用共享内存且不允许I / O操作时,会发生此问题。对于大多数Kaggle用户来说,这是一个令人沮丧的问题,同时适合机器学习模型。

我通过使用以下代码设置JOBLIB_TEMP_FOLDER变量来克服此问题。

%env JOBLIB_TEMP_FOLDER=/tmp

答案 2 :(得分:0)

这是因为你设置了n_jobs = 3。你可以将它设置为1,然后不会使用共享内存,即使学习需要更长的时间。您可以选择按照上面的答案选择joblib缓存目录,但请记住,此缓存也可以快速填满您的磁盘,具体取决于数据集?和磁盘事务可以减慢你的工作。

答案 3 :(得分:0)

我知道这有点晚了,但是我通过设置learning_method = 'batch'克服了这个问题。

这可能会带来其他问题,例如延长培训时间,但可以缓解共享内存空间不足的问题。

或者可以设置较小的batch_size。尽管我自己尚未对此进行测试。

答案 4 :(得分:0)

@silterser的解决方案为我解决了这个问题。

如果要在代码中设置环境变量,请执行以下操作:

import os
os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp'