我使用scikit-learn为LDA模型拟合了大量数据。相关代码段如下所示:
lda = LatentDirichletAllocation(n_topics = n_topics,
max_iter = iters,
learning_method = 'online',
learning_offset = offset,
random_state = 0,
evaluate_every = 5,
n_jobs = 3,
verbose = 0)
lda.fit(X)
(我想这里唯一可能相关的细节是我使用多个工作。)
过了一段时间我才得到"设备上没有空间"错误,即使磁盘上有足够的空间和充足的可用内存。我在两台不同的计算机上(在我的本地计算机和远程服务器上)多次尝试相同的代码,首先使用python3,然后使用python2,每次我都得到相同的错误。
如果我在较小的数据样本上运行相同的代码,一切正常。
整个堆栈跟踪:
Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 271, in save
obj, filename = self._write_array(obj, filename)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 231, in _write_array
self.np.save(filename, array)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/npyio.py", line 491, in save
pickle_kwargs=pickle_kwargs)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/format.py", line 584, in write_array
array.tofile(fp)
IOError: 275500 requested and 210934 written
IOErrorTraceback (most recent call last)
<ipython-input-7-6af7e7c9845f> in <module>()
7 n_jobs = 3,
8 verbose = 0)
----> 9 lda.fit(X)
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in fit(self, X, y)
509 for idx_slice in gen_batches(n_samples, batch_size):
510 self._em_step(X[idx_slice, :], total_samples=n_samples,
--> 511 batch_update=False, parallel=parallel)
512 else:
513 # batch update
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _em_step(self, X, total_samples, batch_update, parallel)
403 # E-step
404 _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
--> 405 parallel=parallel)
406
407 # M-step
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _e_step(self, X, cal_sstats, random_init, parallel)
356 self.mean_change_tol, cal_sstats,
357 random_state)
--> 358 for idx_slice in gen_even_slices(X.shape[0], n_jobs))
359
360 # merge result
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
808 # consumption.
809 self._iterating = False
--> 810 self.retrieve()
811 # Make sure that we get a last message telling us we are done
812 elapsed_time = time.time() - self._start_time
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
725 job = self._jobs.pop(0)
726 try:
--> 727 self._output.extend(job.get())
728 except tuple(self.exceptions) as exception:
729 # Stop dispatching any new job in the async callback thread
/home/ubuntu/anaconda2/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
565 return self._value
566 else:
--> 567 raise self._value
568
569 def _set(self, i, obj):
IOError: [Errno 28] No space left on device
答案 0 :(得分:32)
与/dev/shm
有同样的问题。看来,当您运行df -h
时,您的共享内存不足(JOBLIB_TEMP_FOLDER
)。尝试将/tmp
环境变量设置为不同的内容:例如import os
import csv
from itertools import chain
from collections import defaultdict
def get_file_values(find_files, output_name):
for root, dirs, files in os.walk(os.getcwd()):
if all(x in files for x in find_files):
outputs = []
for f in find_files:
d = {}
with open(os.path.join(root, f), 'r') as f1:
for line in f1:
ta = line.split()
d[ta[1]] = int(ta[0])
outputs.append(d)
d3 = defaultdict(list)
for k, v in chain(*(d.items() for d in outputs)):
d3[k].append(v)
with open(os.path.join(root, output_name), 'w+') as fnew:
fnew.write(os.path.realpath(root))
writer = csv.writer(fnew)
for k, v in d3.items():
writer.writerow([k] + v)
get_file_values(['genes.gff.genespercontig.csv', 'hmmer.analyze.txt.results.txt'], 'output_contigsvsgenes.csv')
。在我的情况下,它解决了这个问题。
或者只是增加共享内存的大小,如果您拥有正在训练LDA的计算机的相应权限。
答案 1 :(得分:6)
当使用共享内存且不允许I / O操作时,会发生此问题。对于大多数Kaggle用户来说,这是一个令人沮丧的问题,同时适合机器学习模型。
我通过使用以下代码设置JOBLIB_TEMP_FOLDER变量来克服此问题。
%env JOBLIB_TEMP_FOLDER=/tmp
答案 2 :(得分:0)
这是因为你设置了n_jobs = 3。你可以将它设置为1,然后不会使用共享内存,即使学习需要更长的时间。您可以选择按照上面的答案选择joblib缓存目录,但请记住,此缓存也可以快速填满您的磁盘,具体取决于数据集?和磁盘事务可以减慢你的工作。
答案 3 :(得分:0)
我知道这有点晚了,但是我通过设置learning_method = 'batch'
克服了这个问题。
这可能会带来其他问题,例如延长培训时间,但可以缓解共享内存空间不足的问题。
或者可以设置较小的batch_size
。尽管我自己尚未对此进行测试。
答案 4 :(得分:0)
@silterser的解决方案为我解决了这个问题。
如果要在代码中设置环境变量,请执行以下操作:
import os
os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp'