我有一个数据框:
In [15]: df
Out[15]:
date day
0 2015-10-10 23
1 2015-12-19 9
2 2016-03-05 34
3 2016-09-17 23
4 2016-04-30 2
我想从日期中减去天数并创建一个新列。
In [16]: df.dtypes
Out[16]:
date datetime64[ns]
day int64
所需的输出类似于:
In [15]: df
Out[15]:
date day date1
0 2015-10-10 23 2015-09-17
1 2015-12-19 9 2015-12-10
2 2016-03-05 34 2016-01-29
3 2016-09-17 23 2016-08-25
4 2016-04-30 2 2016-04-28
我试过但这不起作用:
df['date1']=df['date']+pd.Timedelta(df['date'].dt.day-df['day'])
它抛出错误:
TypeError:timedelta days组件的不支持类型:Series
答案 0 :(得分:11)
您可以使用to_timedelta
:
df['date1'] = df['date'] - pd.to_timedelta(df['day'], unit='d')
print (df)
date day date1
0 2015-10-10 23 2015-09-17
1 2015-12-19 9 2015-12-10
2 2016-03-05 34 2016-01-31
3 2016-09-17 23 2016-08-25
4 2016-04-30 2 2016-04-28
如果需要Timedelta
使用apply
,但速度较慢:
df['date1'] = df['date'] - df.day.apply(lambda x: pd.Timedelta(x, unit='D'))
print (df)
date day date1
0 2015-10-10 23 2015-09-17
1 2015-12-19 9 2015-12-10
2 2016-03-05 34 2016-01-31
3 2016-09-17 23 2016-08-25
4 2016-04-30 2 2016-04-28
<强>计时强>:
#[5000 rows x 2 columns]
df = pd.concat([df]*1000).reset_index(drop=True)
In [252]: %timeit df['date'] - df.day.apply(lambda x: pd.Timedelta(x, unit='D'))
10 loops, best of 3: 45.3 ms per loop
In [253]: %timeit df['date'] - pd.to_timedelta(df['day'], unit='d')
1000 loops, best of 3: 1.71 ms per loop
答案 1 :(得分:1)
import dateutil.relativedelta
def calculate diff(v):
return v['date'] - dateutil.relativedelta.relativedelta(day=v['day'])
df['date1']=df.apply(calculate_diff, axis=1)
鉴于v ['date']是日期时间对象