SQL每小时​​累积量和

时间:2016-10-18 09:06:31

标签: sql sql-server

下表列出了指定操作(operid)中的已处理产品数量(已处理数量)。 DefaultTable 我想从这张表中获得的是在任何必要的时间内每小时累计数量。

我尝试了两种不同的方法来实现我想要的目标。

循环的第一种方法

Declare @hour tinyint;
SET @hour=8;
Declare @date datetime;
SET @date = DATEADD(dd, 0, DATEDIFF(dd, 0, GETDATE()));
while (@hour<=DATEPART(HOUR, GETDATE()))
Begin
       select lineid, sectionid, operid, sum(processedquantity) as 'CumulativeSum', DATEADD(hour,@hour,@date) as 'UntilTime' from PROCESSBUNDLE
             where PROCESSBUNDLE.PROCESSEND>=@date
       and OPERID in (SELECT OPERID FROM [VTRR].[dbo].[MODELOPER] where MONITOR='1')
       and SECTIONID=40 
       and PROCESSEND<=DATEADD(hour,@hour,@date)
       group by LINEID, SECTIONID, OPERID
       order by OPERID asc;
       SET @hour=@hour+1;
end

上面的查询循环可以计算我想要的但不幸的是所有结果都在不同的查询中。所以结果将如下所示:

1stapproachwithloop

使用分组依据的第二种方法

Declare @hour tinyint;
SET @hour=DATEPART(HOUR, GETDATE())+1;
Declare @date datetime;
SET @date = DATEADD(dd, 0, DATEDIFF(dd, 0, GETDATE()));

select lineid, sectionid, operid, sum(processedquantity) as 'Adet', DATEPART(HOUR, PROCESSEND)+1 as 'UntilHour' from PROCESSBUNDLE
       where PROCESSEND>=@date
       and OPERID in (SELECT OPERID FROM [VTRR].[dbo].[MODELOPER] where MONITOR='1')
       and SECTIONID=40 
       and PROCESSEND<=DATEADD(hour,@hour,@date)
       group by LINEID, SECTIONID, OPERID, DATEPART(HOUR, PROCESSEND)
       order by OPERID, 'UntilHour' asc;

这个查询不能给我累积的结果但是因为每小时“分组依据”而给我一个我想要的外观 结果如下:

2ndapproachwithgroupby

那么在一个结果集中可能有累积结果吗?这就是我想要实现的目标:

Result

2 个答案:

答案 0 :(得分:4)

这就是你想要的............

CREATE TABLE #PROCESSBUNDLE (
    BUNDLEID varchar(50) not null, 
    LINEID varchar(50) not null,
    SECTIONID varchar(50) not null,
    OPERID varchar(50) not null,
    PROCESSBEGIN datetime not null,
    PROCESSEND datetime not null,
    PROCESSEDQUANTITY int not null );

GO

INSERT INTO #PROCESSBUNDLE
    ([BUNDLEID], [LINEID], [SECTIONID], [OPERID], [PROCESSBEGIN], [PROCESSEND], [PROCESSEDQUANTITY])
VALUES
    ('2016031460', '01', '40', '0080004', '2016-Oct-18 14:40:41.000', '2016-Oct-18 14:46:17.193', 20),
    ('2016031360', '01', '40', '3020001', '2016-Oct-18 08:02:04.603', '2016-Oct-18 08:08:47.420', 15),
    ('2016031368', '01', '40', '3020001', '2016-Oct-18 09:10:39.860', '2016-Oct-18 09:15:38.170', 12),
    ('2016031432', '01', '40', '3020001', '2016-Oct-18 09:50:54.743', '2016-Oct-18 10:05:11.560', 13),
    ('2016031437', '01', '40', '3020001', '2016-Oct-18 11:09:55.570', '2016-Oct-18 11:15:27.733', 20),
    ('2016031450', '01', '40', '3020001', '2016-Oct-18 12:00:59.473', '2016-Oct-18 12:10:30.467', 15),
    ('2016031540', '01', '40', '3020001', '2016-Oct-18 14:35:13.067', '2016-Oct-18 14:42:45.613', 14),
    ('2016031323', '01', '40', '3120010', '2016-Oct-18 08:18:05.723', '2016-Oct-18 08:22:13.333', 20),
    ('2016031333', '01', '40', '3120010', '2016-Oct-18 08:56:33.393', '2016-Oct-18 09:03:56.020', 20),
    ('2016031341', '01', '40', '3120010', '2016-Oct-18 09:35:36.240', '2016-Oct-18 09:40:17.470', 17),
    ('2016031346', '01', '40', '3120010', '2016-Oct-18 10:37:38.190', '2016-Oct-18 10:43:16.990', 17),
    ('2016031356', '01', '40', '3120010', '2016-Oct-18 11:29:47.540', '2016-Oct-18 11:34:47.130', 20),
    ('2016031368', '01', '40', '3120010', '2016-Oct-18 12:13:15.887', '2016-Oct-18 12:16:10.800', 12),
    ('2016031434', '01', '40', '3120010', '2016-Oct-18 13:24:22.120', '2016-Oct-18 13:27:46.367', 20),
    ('2016031444', '01', '40', '3120010', '2016-Oct-18 14:05:44.710', '2016-Oct-18 14:12:36.430', 20),
    ('2016029572', '01', '40', '3190000', '2016-Oct-18 07:54:58.873', '2016-Oct-18 08:01:37.667', 17),
    ('2016031285', '01', '40', '3140000', '2016-Oct-18 07:59:18.137', '2016-Oct-18 08:21:45.207', 17),
    ('2016031287', '01', '40', '3190000', '2016-Oct-18 09:56:59.367', '2016-Oct-18 10:08:59.743', 17),
    ('2016031315', '01', '40', '3190000', '2016-Oct-18 08:34:50.027', '2016-Oct-18 08:42:57.040', 13),
    ('2016031324', '01', '40', '3190000', '2016-Oct-18 09:07:19.597', '2016-Oct-18 09:14:57.113', 20),
    ('2016031330', '01', '40', '3140000', '2016-Oct-18 07:30:15.730', '2016-Oct-18 07:41:43.390', 15),
    ('2016031338', '01', '40', '3190000', '2016-Oct-18 11:08:30.757', '2016-Oct-18 11:15:43.453', 17),
    ('2016031342', '01', '40', '3140000', '2016-Oct-18 09:02:01.737', '2016-Oct-18 09:26:24.780', 16),
    ('2016031346', '01', '40', '3190000', '2016-Oct-18 11:52:23.667', '2016-Oct-18 11:58:22.227', 17),
    ('2016031350', '01', '40', '3140000', '2016-Oct-18 09:57:29.077', '2016-Oct-18 10:39:06.273', 20),
    ('2016031356', '01', '40', '3190000', '2016-Oct-18 13:26:02.440', '2016-Oct-18 13:30:53.807', 20),
    ('2016031360', '01', '40', '3140000', '2016-Oct-18 11:08:58.843', '2016-Oct-18 11:30:53.213', 15),
    ('2016031365', '01', '40', '3140000', '2016-Oct-18 11:30:53.213', '2016-Oct-18 12:00:02.970', 20),
    ('2016031438', '01', '40', '3140000', '2016-Oct-18 12:08:46.970', '2016-Oct-18 12:35:02.767', 20),
    ('2016031444', '01', '40', '3140000', '2016-Oct-18 13:36:11.650', '2016-Oct-18 14:04:19.220', 20),
    ('2016031559', '01', '40', '3140000', '2016-Oct-18 14:48:08.700', '2016-Oct-18 14:53:47.587', 20),
    ('2016029572', '01', '40', '3170010', '2016-Oct-18 07:29:35.693', '2016-Oct-18 07:49:48.240', 17),
    ('2016029582', '01', '40', '3240000', '2016-Oct-18 07:53:46.757', '2016-Oct-18 07:54:46.723', 14),
    ('2016031164', '01', '40', '3260000', '2016-Oct-18 07:46:28.670', '2016-Oct-18 07:54:32.370', 20),
    ('2016031167', '01', '40', '3250002', '2016-Oct-18 08:00:18.847', '2016-Oct-18 08:08:33.143', 13),
    ('2016031172', '01', '40', '3260000', '2016-Oct-18 09:13:13.433', '2016-Oct-18 09:17:35.810', 13),
    ('2016031173', '01', '40', '3260000', '2016-Oct-18 08:45:57.543', '2016-Oct-18 08:46:04.777', 17),
    ('2016031287', '01', '40', '3240000', '2016-Oct-18 12:06:09.583', '2016-Oct-18 12:12:50.987', 17)


SELECT 
  lineid, sectionid, operid, UntilHour, Adet, SUM(Adet) 
  OVER(PARTITION BY lineid, sectionid, operid 
  ORDER BY lineid, sectionid, operid, UntilHour ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ) AS RunningTotal
FROM 
(
  SELECT SUB_Q.lineid, SUB_Q.sectionid, SUB_Q.operid, SUB_Q.UntilHour, SUM(SUB_Q.processedquantity) as Adet
  FROM
  (
    select lineid, sectionid, operid, DATEPART(HOUR, PROCESSEND)+1 as UntilHour, processedquantity
    from #PROCESSBUNDLE
    where 1=1
    --and OPERID in (SELECT OPERID FROM [VTRR].[dbo].[MODELOPER] where MONITOR='1')
    and SECTIONID=40 
    --and PROCESSEND<=DATEADD(hour,@hour,@date)
  ) SUB_Q
  GROUP BY SUB_Q.lineid, SUB_Q.sectionid, SUB_Q.operid, SUB_Q.UntilHour
)TOTALS_Q
ORDER BY lineid, sectionid, operid, UntilHour

答案 1 :(得分:1)

根据您的SQL-Server版本,add 'djangocms_admin_style' to your INSTALLED_APPS just before 'django.contrib.admin' Window-Function可能会对您有所帮助。

鉴于Processend来自数据类型datetime而不是varchar:

SUM() OVER(PARTITION BY )

您将在适用于 select lineid, sectionid, operid, sum(processedquantity) OVER(PARTITION BY CONVERT(NVARCHAR(13), Processend, 20)) as 'Adet'from PROCESSBUNDLE where OPERID in (SELECT OPERID FROM [VTRR].[dbo].[MODELOPER] where MONITOR='1') and SECTIONID=40 order by OPERID, Processend; 分组的每一行中获得processedquantity的SUM。在这里,我踢出了Partition By条件,因此您将看到所有行。我不确定添加group by是否有效。这是未经测试的。我想它并不是因为Processend也必须在分组中,这会伪造结果。如果您想要一个分组的resut,您可以在子选择中执行上面的查询,然后进行分组。

对于那个例子,数据会很棒。

告诉我这是否对你有帮助。