我在纯python中编写了以下代码,其描述的内容是在docstrings中:
import numpy as np
from scipy.ndimage.measurements import find_objects
import itertools
def alt_indexer(arr):
"""
Returns a dictionary with the elements of arr as key
and the corresponding slice as value.
Note:
This function assumes arr is sorted.
Example:
>>> arr = [0,0,3,2,1,2,3]
>>> loc = _indexer(arr)
>>> loc
{0: (slice(0L, 2L, None),),
1: (slice(2L, 3L, None),),
2: (slice(3L, 5L, None),),
3: (slice(5L, 7L, None),)}
>>> arr = sorted(arr)
>>> arr[loc[3][0]]
[3, 3]
>>> arr[loc[2][0]]
[2, 2]
"""
unique, counts = np.unique(arr, return_counts=True)
labels = np.arange(1,len(unique)+1)
labels = np.repeat(labels,counts)
slicearr = find_objects(labels)
index_dict = dict(itertools.izip(unique,slicearr))
return index_dict
由于我将索引非常大的数组,我想通过使用cython加速操作,这是等效的实现:
import numpy as np
cimport numpy as np
def _indexer(arr):
cdef tuple unique_counts = np.unique(arr, return_counts=True)
cdef np.ndarray[np.int32_t,ndim=1] unique = unique_counts[0]
cdef np.ndarray[np.int32_t,ndim=1] counts = unique_counts[1].astype(int)
cdef int start=0
cdef int end
cdef int i
cdef dict d ={}
for i in xrange(len(counts)):
if i>0:
start = counts[i-1]+start
end=counts[i]+start
d[unique[i]]=slice(start,end)
return d
我比较了完成两个操作所花费的时间:
In [26]: import numpy as np
In [27]: rr=np.random.randint(0,1000,1000000)
In [28]: %timeit _indexer(rr)
10 loops, best of 3: 40.5 ms per loop
In [29]: %timeit alt_indexer(rr) #pure python
10 loops, best of 3: 51.4 ms per loop
正如您所看到的,速度提升很小。我确实意识到我的代码已经部分优化,因为我使用了numpy。
是否存在我不知道的瓶颈?
我不应该使用np.unique
并编写我自己的实现吗?
感谢。
答案 0 :(得分:1)
arr
有非负数,不是很大且有很多重复的int
数字,这里有一种替代方法,使用np.bincount
来模拟与np.unique(arr, return_counts=True)
相同的行为 - < / p>
def unique_counts(arr):
counts = np.bincount(arr)
mask = counts!=0
unique = np.nonzero(mask)[0]
return unique, counts[mask]
运行时测试
案例#1:
In [83]: arr = np.random.randint(0,100,(1000)) # Input array
In [84]: unique, counts = np.unique(arr, return_counts=True)
...: unique1, counts1 = unique_counts(arr)
...:
In [85]: np.allclose(unique,unique1)
Out[85]: True
In [86]: np.allclose(counts,counts1)
Out[86]: True
In [87]: %timeit np.unique(arr, return_counts=True)
10000 loops, best of 3: 53.2 µs per loop
In [88]: %timeit unique_counts(arr)
100000 loops, best of 3: 10.2 µs per loop
案例#2:
In [89]: arr = np.random.randint(0,1000,(10000)) # Input array
In [90]: %timeit np.unique(arr, return_counts=True)
1000 loops, best of 3: 713 µs per loop
In [91]: %timeit unique_counts(arr)
10000 loops, best of 3: 39.1 µs per loop
案例#3:让我们运行unique
在最小到最大范围内有一些缺失数字的情况,并根据np.unique
版本验证结果作为完整性检查。在这种情况下,我们不会有很多重复的数字,因此预计性能不会更好。
In [98]: arr = np.random.randint(0,10000,(1000)) # Input array
In [99]: unique, counts = np.unique(arr, return_counts=True)
...: unique1, counts1 = unique_counts(arr)
...:
In [100]: np.allclose(unique,unique1)
Out[100]: True
In [101]: np.allclose(counts,counts1)
Out[101]: True
In [102]: %timeit np.unique(arr, return_counts=True)
10000 loops, best of 3: 61.9 µs per loop
In [103]: %timeit unique_counts(arr)
10000 loops, best of 3: 71.8 µs per loop