我有一个数据框,用它们的值表示不同的类。例如:
df=pd.DataFrame(
{'label':['a','a','b','a','b','b','a','c','c','d','e','c'],
'date':[1,2,3,4,3,7,12,18,11,2,5,3],'value':np.random.randn(12)})
我想选择value_counts小于特定阈值的标签,然后将它们放入一个类别,即将它们标记为例如'零'。
这是我的尝试:
value_count=df.label.value_counts()
threshold = 3
for index in value_count[value_count.values<=threshold].index:
df.label[df.label==index]='zero'
有更好的方法吗?
答案 0 :(得分:2)
您可以使用groupby.transform获取与原始索引对齐的值计数,然后将其用作布尔索引:
df.loc[df.groupby('label')['label'].transform('count') <= threshold, 'label'] = 'zero'
df
Out:
date label value
0 1 a -0.587957
1 2 a 0.341551
2 3 zero 0.516933
3 4 a 0.234042
4 3 zero -0.206185
5 7 zero 0.840724
6 12 a -0.728868
7 18 zero 0.111260
8 11 zero -0.471337
9 2 zero 0.030803
10 5 zero 1.012638
11 3 zero -1.233750
以下是我的时间:
df = pd.concat([df]*10**4)
%timeit df.groupby('label')['label'].transform('count') <= threshold
100 loops, best of 3: 7.86 ms per loop
%%timeit
value_count=df.label.value_counts()
df['label'].isin(value_count[value_count.values<=threshold].index)
100 loops, best of 3: 9.24 ms per loop
答案 1 :(得分:1)
你可以做到
In [59]: df.loc[df['label'].isin(value_count[value_count.values<=threshold].index),
'label'] = 'zero'
In [60]: df
Out[60]:
date label value
0 1 a -0.132887
1 2 a -1.306601
2 3 zero -1.431952
3 4 a 0.928743
4 3 zero 0.278955
5 7 zero 0.128430
6 12 a 0.200825
7 18 zero -0.560548
8 11 zero -2.925706
9 2 zero -0.061373
10 5 zero -0.632036
11 3 zero -1.061894
计时
In [87]: df = pd.concat([df]*10**4, ignore_index=True)
In [88]: %timeit df['label'].isin(value_count[value_count.values<=threshold].index)
100 loops, best of 3: 7.1 ms per loop
In [89]: %timeit df.groupby('label')['label'].transform('count') <= threshold
100 loops, best of 3: 11.7 ms per loop
In [90]: df.shape
Out[90]: (120000, 3)
您可能希望使用较大的数据集进行基准测试。而且,这可能无法比较,因为您已预先value_count