我正在尝试创建一个闪亮的应用程序,允许用户选择要加密的列,如果数据相同,则每行中的值在后续运行中应始终相同。即如果客户名=“John”,那么在运行此流程时总是会得到“A”,如果客户名称更改为“Jon”,则可以获得“C”...但如果更改回“John”,您将再次获得A.这将用于“掩盖”敏感数据以进行分析。
此外,如果有人可以通过存储稍后要使用的密钥来使用某种方法来“解密”这些列...那将不胜感激。
我试图完成此操作的简单版本(需要摘要库):
test <- data.frame(CustomerName=c("John Snow","John Snow","Daffy Duck","Daffy Duck","Daffy Duck","Daffy Duck","Daffy Duck","Joe Farmer","Joe Farmer","Joe Farmer","Joe Farmer"),
LoanNumber=c("12548","45878","45796","45813","45125","45216","45125","45778","45126","32548","45683"),
LoanBalance=c("458463","5412548","458463","5412548","458463","5412548","458463","5412548","458463","5412548","2484722"),
FarmType=c("Hay","Dairy","Fish","Hay","Dairy","Fish","Hay","Dairy","Fish","Hay","Dairy"))
test[,1] <- sapply(test[,1],digest,algo="sha1")
示例输出:
CustomerName LoanNumber LoanBalance FarmType
1 5c96f777a14f201a6a9b79623d548f7ab61c7a11 12548 458463 Hay
2 5c96f777a14f201a6a9b79623d548f7ab61c7a11 45878 5412548 Dairy
3 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45796 458463 Fish
4 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45813 5412548 Hay
5 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45125 458463 Dairy
6 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45216 5412548 Fish
7 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45125 458463 Hay
8 b0db86a39b9617cef61a8986fd57af7960eec9f4 45778 5412548 Dairy
9 b0db86a39b9617cef61a8986fd57af7960eec9f4 45126 458463 Fish
10 b0db86a39b9617cef61a8986fd57af7960eec9f4 32548 5412548 Hay
11 b0db86a39b9617cef61a8986fd57af7960eec9f4 45683 2484722 Dairy
修改后的数据框(在John中删除了'h'):
test <- data.frame(CustomerName=c("Jon Snow","Jon Snow","Daffy Duck","Daffy Duck","Daffy Duck","Daffy Duck","Daffy Duck","Joe Farmer","Joe Farmer","Joe Farmer","Joe Farmer"),
LoanNumber=c("12548","45878","45796","45813","45125","45216","45125","45778","45126","32548","45683"),
LoanBalance=c("458463","5412548","458463","5412548","458463","5412548","458463","5412548","458463","5412548","2484722"),
FarmType=c("Hay","Dairy","Fish","Hay","Dairy","Fish","Hay","Dairy","Fish","Hay","Dairy"))
test[,1] <- sapply(test[,1],digest,algo="sha1")
新输出:
CustomerName LoanNumber LoanBalance FarmType
1 2cabeabb3b50e04d3b46ea2c68ab12c7350cd87f 12548 458463 Hay
2 2cabeabb3b50e04d3b46ea2c68ab12c7350cd87f 45878 5412548 Dairy
3 b0187b6ff2322fa86004d4d22cd479f3cdc345d2 45796 458463 Fish
4 b0187b6ff2322fa86004d4d22cd479f3cdc345d2 45813 5412548 Hay
5 b0187b6ff2322fa86004d4d22cd479f3cdc345d2 45125 458463 Dairy
6 b0187b6ff2322fa86004d4d22cd479f3cdc345d2 45216 5412548 Fish
7 b0187b6ff2322fa86004d4d22cd479f3cdc345d2 45125 458463 Hay
8 2127453066c45db6ba7e2f6f8c14d22796c3fd54 45778 5412548 Dairy
9 2127453066c45db6ba7e2f6f8c14d22796c3fd54 45126 458463 Fish
10 2127453066c45db6ba7e2f6f8c14d22796c3fd54 32548 5412548 Hay
11 2127453066c45db6ba7e2f6f8c14d22796c3fd54 45683 2484722 Dairy
我的期望:
CustomerName LoanNumber LoanBalance FarmType
1 2cabeabb3b50e04d3b46ea2c68ab12c7350cd87f 12548 458463 Hay
2 2cabeabb3b50e04d3b46ea2c68ab12c7350cd87f 45878 5412548 Dairy
3 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45796 458463 Fish
4 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45813 5412548 Hay
5 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45125 458463 Dairy
6 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45216 5412548 Fish
7 10bf345ab114c20df2d1eedbbe7e7cd6b969db05 45125 458463 Hay
8 b0db86a39b9617cef61a8986fd57af7960eec9f4 45778 5412548 Dairy
9 b0db86a39b9617cef61a8986fd57af7960eec9f4 45126 458463 Fish
10 b0db86a39b9617cef61a8986fd57af7960eec9f4 32548 5412548 Hay
11 b0db86a39b9617cef61a8986fd57af7960eec9f4 45683 2484722 Dairy
我是否误解了这是如何运作的?如果我将相同的逻辑应用于多个列,我会为未更改的列获取相同的值,但是对于具有已修改值的列,问题仍然存在。我试图对摘要函数进行矢量化,以确保我的sapply函数不是具有相同结果的问题。有什么想法吗?
答案 0 :(得分:0)
我认为我已经回答了我自己的问题......当然我发布在这里之后:)。
摘要函数有一个serialize参数,其中包含以下文档:一个逻辑变量,指示是否应使用serialize(ASCII格式)序列化对象。将此设置为FALSE允许将给定字符串的摘要输出与已知控制输出进行比较。它还允许使用原始向量,例如非ASCII序列化的输出。
将serialize设置为FALSE似乎可以解决问题并获得预期的输出。
例如:
test[,1] <- sapply(test[,1],digest,algo="sha1",serialize = FALSE)