使用Python的numpy进行随机梯度下降实现

时间:2016-10-11 10:14:08

标签: python numpy machine-learning gradient-descent

我必须使用python numpy库实现随机梯度下降。为此,我给出了以下函数定义:

def compute_stoch_gradient(y, tx, w):
    """Compute a stochastic gradient for batch data."""

def stochastic_gradient_descent(
        y, tx, initial_w, batch_size, max_epochs, gamma):
    """Stochastic gradient descent algorithm."""

我还获得了以下帮助功能:

def batch_iter(y, tx, batch_size, num_batches=1, shuffle=True):
    """
    Generate a minibatch iterator for a dataset.
    Takes as input two iterables (here the output desired values 'y' and the input data 'tx')
    Outputs an iterator which gives mini-batches of `batch_size` matching elements from `y` and `tx`.
    Data can be randomly shuffled to avoid ordering in the original data messing with the randomness of the minibatches.
    Example of use :
    for minibatch_y, minibatch_tx in batch_iter(y, tx, 32):
        <DO-SOMETHING>
    """
    data_size = len(y)

    if shuffle:
        shuffle_indices = np.random.permutation(np.arange(data_size))
        shuffled_y = y[shuffle_indices]
        shuffled_tx = tx[shuffle_indices]
    else:
        shuffled_y = y
        shuffled_tx = tx
    for batch_num in range(num_batches):
        start_index = batch_num * batch_size
        end_index = min((batch_num + 1) * batch_size, data_size)
        if start_index != end_index:
            yield shuffled_y[start_index:end_index], shuffled_tx[start_index:end_index]

我实现了以下两个功能:

def compute_stoch_gradient(y, tx, w):
    """Compute a stochastic gradient for batch data."""
    e = y - tx.dot(w)
    return (-1/y.shape[0])*tx.transpose().dot(e)


def stochastic_gradient_descent(y, tx, initial_w, batch_size, max_epochs, gamma):
    """Stochastic gradient descent algorithm."""
    ws = [initial_w]
    losses = []
    w = initial_w
    for n_iter in range(max_epochs):
        for minibatch_y,minibatch_x in batch_iter(y,tx,batch_size):
            w = ws[n_iter] - gamma * compute_stoch_gradient(minibatch_y,minibatch_x,ws[n_iter])
            ws.append(np.copy(w))
            loss = y - tx.dot(w)
            losses.append(loss)

    return losses, ws

我不确定迭代应该在范围(max_epochs)中还是在更大的范围内完成。我这样说是因为我读到一个时代是“每次我们遍历整个数据集”。所以我认为一个时代更多的是一次迭代......

1 个答案:

答案 0 :(得分:3)

在典型实现中,批量大小为B的小批量梯度下降应随机从数据集中选取B个数据点,并根据此子集上的计算梯度更新权重。此过程本身将持续许多次,直到收敛或某个阈值最大迭代。 B = 1的小批量是SGD,有时会产生噪音。

除上述注释外,您可能还想使用批量大小和学习率(步长),因为它们对随机和小批量梯度下降的收敛速度有显着影响。

以下图表显示了这两个参数对SGDlogistic regression的收敛率的影响,同时对亚马逊产品评论数据集进行情绪分析,这是一项出现在机器学习课程中的作业 - 华盛顿大学的分类:

enter image description here enter image description here

有关此问题的更多详细信息,请参阅https://sandipanweb.wordpress.com/2017/03/31/online-learning-sentiment-analysis-with-logistic-regression-via-stochastic-gradient-ascent/?frame-nonce=987e584e16