我有一组数据,我想对二元结果变量(治疗)的几率进行逻辑回归建模,其中Stage作为序数解释变量(0,1,2,3,4)。 Hba1c是一个连续变量。
我的班级陈述是否正确?
如何计算每个序数变量的优势比?
PROC LOGISTIC data=new;
class EyeID Therapy (ref ="0") Stage (param = ordinal) Gender (ref="M") Ethnicity (ref="C")/ param = ref;
model Therapy = Stage Gender age A1c Ethnicity;
oddsratio Stage;
run;
这是输出:
Odds Ratio Estimates and Wald Confidence Intervals
Odds Ratio Estimate 95% Confidence Limits
Stage 1 vs 0 0.873 0.547 1.394
Stage 2 vs 0 2.434 0.895 6.620
Stage 3 vs 0 0.915 0.431 1.941
Stage 4 vs 0 0.356 0.132 0.961
Stage 2 vs 1 2.788 0.980 7.935
Stage 3 vs 1 1.048 0.465 2.360
Stage 4 vs 1 0.408 0.144 1.156
Stage 3 vs 2 0.376 0.113 1.249
Stage 4 vs 2 0.146 0.038 0.567
Stage 4 vs 3 0.389 0.117 1.288
如果我将Stage报告为序数变量,那么创建这样的表是否正确?
Stage 1 vs 0 0.873 0.547 1.394
Stage 2 vs 1 2.788 0.98 7.935
Stage 3 vs 2 0.376 0.113 1.249
Stage 4 vs 3 0.389 0.117 1.288
我不应该这样报道,对吗?这是阶段是否明确?
Stage 1 vs 0 0.873 0.547 1.394
Stage 2 vs 0 2.434 0.895 6.62
Stage 3 vs 0 0.915 0.431 1.941
Stage 4 vs 0 0.356 0.132 0.961
答案 0 :(得分:1)
我认为你在课堂陈述中不需要Therapy
。
没有样本数据,我无法测试,但我的第一遍就是这样写。
proc logistic data=test;
class PVDStage (param = ordinal);
model Therapy(ref = '0') = PVDStage hba1c;
ODDSRATIO PVDStage;
run;
如果您可以提供一些样本数据,我会修改我的答案以确保其有效。