我需要为一行子图共享相同的颜色条。每个子图具有对称颜色函数的对数缩放。这些任务中的每一个都有一个很好的解决方案,在stackoverflow上解释:For sharing the color bar和for nicely formatted symmetric logarithmic scaling。
然而,当我在同一代码中结合两个技巧时,颜色栏“忘记”应该是对称的对数。有办法解决这个问题吗?
测试代码如下,我以明显的方式将上述两个引用结合起来:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from matplotlib import colors, ticker
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
data = np.random.normal(size=(3,10,10))
vmax = np.amax(np.abs(data))
logthresh=4
logstep=1
linscale=1
maxlog=int(np.ceil(np.log10(vmax)))
#generate logarithmic ticks
tick_locations=([-(10**x) for x in xrange(-logthresh, maxlog+1, logstep)][::-1]
+[0.0]
+[(10**x) for x in xrange(-logthresh,maxlog+1, logstep)] )
# Add data to image grid
for ax, z in zip(grid,data):
print z
im = ax.imshow(z, vmin=-vmax, vmax=vmax,
norm=colors.SymLogNorm(10**-logthresh, linscale=linscale))
# Colorbar
ax.cax.colorbar(im,ticks=tick_locations, format=ticker.LogFormatter())
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
答案 0 :(得分:0)
这是你想要实现的目标吗?
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from matplotlib import colors, ticker
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True
)
data = np.random.normal(size=(3,10,10))
vmax = np.amax(np.abs(data))
logthresh=4
logstep=1
linscale=1
maxlog=int(np.ceil(np.log10(vmax)))
#generate logarithmic ticks
tick_locations=([-(10**x) for x in xrange(-logthresh, maxlog+1, logstep)][::-1]
+[0.0]
+[(10**x) for x in xrange(-logthresh,maxlog+1, logstep)] )
# Add data to image grid
for ax, z in zip(grid,data):
print z
im = ax.imshow(z, vmin=-vmax, vmax=vmax,
norm=colors.SymLogNorm(10**-logthresh, linscale=linscale))
cbaxes = fig.add_axes([0.9, 0.125, 0.02, 0.77])
fig.colorbar(im, format=ticker.LogFormatter(), ticks=tick_locations, cax = cbaxes)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
答案 1 :(得分:0)
根据Erba Aitbayev的解决方案,我发现更换线路就足够了
ax.cax.colorbar(im,ticks=tick_locations, format=ticker.LogFormatter())
最初由行发布的示例代码中的
fig.colorbar(im,ticks=tick_locations, format=ticker.LogFormatter(), cax = ax.cax)
并且一切正常,无需为colorbar指定显式尺寸。我不知道为什么一个有效,另一个无所不知。最好添加相应的评论in the post on sharing colorbars。我检查过,如果在上面两个备选方案中的第二个中调用了colorbar,那么该示例中的线性色标仍然有效。 (我没有足够的声誉在那里添加评论。)