我正试图证明这个问题:
lemma set_integral_mult:
fixes f g :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "set_integrable M A (λx. f x)" "set_integrable M A (λx. g x)"
shows "set_integrable M A (λx. f x * g x)"
和
lemma set_integral_mult1:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "set_integrable M A (λx. f x)"
shows "set_integrable M A (λx. f x * f x)"
但我不能。我已经看到它被证明了加法和减法:
lemma set_integral_add [simp, intro]:
fixes f g :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "set_integrable M A f" "set_integrable M A g"
shows "set_integrable M A (λx. f x + g x)"
and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)"
using assms by (simp_all add: scaleR_add_right)
lemma set_integral_diff [simp, intro]:
assumes "set_integrable M A f" "set_integrable M A g"
shows "set_integrable M A (λx. f x - g x)" and "LINT x:A|M. f x - g x =
(LINT x:A|M. f x) - (LINT x:A|M. g x)"
using assms by (simp_all add: scaleR_diff_right)
甚至是标量乘法而不是两个函数乘法?
答案 0 :(得分:1)
问题在于它根本不是真的。函数f(x) = 1 / sqrt(x)
在集合(0; 1)上是可积的,而积分的值是2.另一方面,它的平方f(x)² = 1 / x
在集合(0; 1)上是不可积的。积分分歧。