C - Cylinder,法向量和旋转中的光线跟踪

时间:2016-09-23 22:32:24

标签: c math geometry

我在这里的第一篇文章。 :) 我正在用C编写我的学校项目的光线跟踪器。我已经可以显示具有一些光效的球体,三角形和平面。现在我想显示圆柱体(然后是圆锥体,但首先是圆柱体!)。 我选择让气缸平行于Y轴。所以我必须解决: x²+z²=r²。从技术上讲,我的函数返回我的相机和交叉点之间的距离:

double          n_ray_cylinder(t_ray *ray, t_cylinder *cylinder, t_data *d)
{
    double a;
    double b;
    double c;
    double delta;
    double root;

    a = ray->dir->x * ray->dir->x + ray->dir->z * ray->dir->z;
    b = 2 * ray->dir->x * (ray->ori->x - cylinder->base->x) + 2 * ray->dir->z * (ray->ori->z - cylinder->base->z);
    c = (ray->ori->x - cylinder->base->x) * (ray->ori->x - cylinder->base->x) + (ray->ori->z - cylinder->base->z) * (ray->ori->z - cylinder->base->z) - cylinder->radius * cylinder->radius;

    delta = b * b - 4 * a * c;
    if (delta > ACC)
    {
            root = (-1 * b - sqrt(delta)) / 2 * a - ACC;
            if (root <= ACC)
                    root = (-1 * b + sqrt(delta)) / 2 * a - ACC;
            return (root);
    }
    return (-1);
}

x =(ray-&gt; ori-&gt; x-cylinder-&gt; base-&gt; x)et z =(ray-&gt; ori-&gt; z- cylinder-&gt; base-&gt; z )et r = cylinder-&gt; radius。
我计算法向量的函数是:

t_vect          *cylinder_normal_at(t_cylinder *cylinder, t_vect *intersection)
{
    t_vect *base_tmp;
    t_vect *normal;
    t_vect *intersection_tmp;

    base_tmp = copy_vector(cylinder->base);
    intersection_tmp = copy_vector(intersection);
    base_tmp->y = intersection_tmp->y;
    normal = init_vector(intersection->x - base_tmp->x, intersection->y - base_tmp->y, intersection-> z - base_tmp->z);
    normalize_vector(normal);
    return (normal);
}

使用这些功能,结果是:Image 1

反映“似乎”好,形状也好,但光线不好。正常的问题? 我和我的一个朋友谈过这件事,他告诉我要像他一样:在我的第一个功能中删除一些数字。所以它变成了:

double          n_ray_cylinder(t_ray *ray, t_cylinder *cylinder, t_data *d)
{
    double a;
    double b;
    double c;
    double delta;
    double root;

    a = ray->dir->x * ray->dir->x + ray->dir->z * ray->dir->z;
    b = ray->dir->x * (ray->ori->x - cylinder->base->x) +
            ray->dir->z * (ray->ori->z - cylinder->base->z);
    c = (ray->ori->x - cylinder->base->x) * (ray->ori->x - cylinder->base->x) +
            (ray->ori->z - cylinder->base->z) * (ray->ori->z - cylinder->base->z) -
            cylinder->radius * cylinder->radius;
    delta = b * b - a * c;
    if (delta > ACC)
    {
            root = (-1 * b - sqrt(delta)) / a - ACC;
            if (root <= ACC)
                    root = (-1 * b + sqrt(delta)) / a - ACC;
            return (root);
    }
    return (-1);
}

正常功能保持不变。然后灯亮了!

第二个功能似乎工作正常。但为什么 ?第一个不是圆柱方程的确切“应用”吗?

这是第二个问题。我想围绕Ox轴旋转我的圆柱体。 x²+(y.cosθ+z.sinθ)²=r²。

在开发方程后,我有这个功能(基于我的第二个功能,我的朋友)

double          nn_ray_cylinder(t_ray *ray, t_cylinder *cylinder, t_data *d)
{
    double a;
    double b;
    double c;
    double delta;
    double root;
    double deg = M_PI * 45 / 180;

    a = ray->dir->x * ray->dir->x + cos(deg) * cos(deg) * ray->dir->z * ray->dir->z +
            2 * ray->dir->z * cos(deg) * ray->dir->y * sin(deg) + ray->dir->y * ray->dir->y *
            sin(deg) * sin(deg);
    b =  (ray->ori->x - cylinder->base->x) * ray->dir->x + cos(deg) * cos(deg) * (ray->ori->z - cylinder->base->z) * ray->dir->z +
            2 * (ray->ori->z - cylinder->base->z) * cos(deg) * ray->dir->y * sin(deg) + 2 * ray->dir->z * cos(deg) *
            (ray->ori->y - cylinder->base->y) * sin(deg) + 2 * (ray->ori->y - cylinder->base->y) * ray->dir->y * sin(deg) * sin(deg);
    c = (ray->ori->x - cylinder->base->x) * (ray->ori->x - cylinder->base->x) + (ray->ori->z - cylinder->base->z) * (ray->ori->z - cylinder->base->z)* cos(deg) * cos(deg) +
            2 * (ray->ori->z - cylinder->base->z) * cos(deg) * (ray->ori->y - cylinder->base->y) * sin(deg) + (ray->ori->y - cylinder->base->y) * (ray->ori->y - cylinder->base->y) *
            sin(deg) * sin(deg) - cylinder->radius * cylinder->radius;
    delta = b * b -  a * c;
    if (delta > ACC)
    {
            root = (-1 * b - sqrt(delta)) / a - ACC;
            if (root <= ACC)
                    root = (-1 * b + sqrt(delta)) / a - ACC;
            return (root);
    }
    return (-1);
}

轮换成功!但是现在我必须在这个交叉点上改变法线向量。为此,我将交替旋转应用于交点,然后我像之前一样计算法线向量,然后我重新应用旋转到该点以找到旋转柱面的法向量。

t_vect          *cylinder_normal_at(t_cylinder *cylinder, t_vect *intersection)
{
    t_vect *base_tmp;
    t_vect *normal;
    t_vect *intersection_tmp;
    t_matrix *rotate = init_rotation_matrix(45, 1, 0, 0);
    t_matrix *rotate_inverted = init_rotation_matrix(-45, 1, 0, 0);

    base_tmp = copy_vector(cylinder->base);
    intersection_tmp = copy_vector(intersection);
    apply_matrix(rotate_inverted, intersection_tmp);
    base_tmp->y = intersection_tmp->y;
    apply_matrix(rotate, intersection_tmp);
    apply_matrix(rotate, base_tmp);
    normal = init_vector(intersection->x - base_tmp->x,
                    intersection->y - base_tmp->y,
                    intersection->z - base_tmp->z);
    normalize_vector(normal);
    return (normal);
}

例如,对于基本圆柱体和旋转90度的圆柱体,结果似乎很好。 但45度反射是完全错误的......

Cylinder 45 degrees

那我的错误在哪里?正常功能是错误的,还是另一个?为什么? 非常感谢能帮助我的人。我把自己淹没在数学中......

编辑:

感谢chux,现在纠正了二次错误编码。 关于法向量的问题仍然存在。

这里我添加了一些旋转功能:

t_matrix        *init_rotation_matrix(double theta, double x, double y, double z)
{
    t_matrix *matrix;
    double rad;

    if ((matrix = malloc(sizeof *matrix)) == NULL)
            return (NULL);
    rad = theta * M_PI / 180;
    matrix->m11 = x * x * (1 - cos(rad)) + cos(rad);
    matrix->m12 = x * y * (1 - cos(rad)) - z * sin(rad);
    matrix->m13 = x * z * (1 - cos(rad)) + y * sin(rad);
    matrix->m14 = 0;
    matrix->m21 = y * x * (1 - cos(rad)) + z * sin(rad);
    matrix->m22 = y * y * (1 - cos(rad)) + cos(rad);
    matrix->m23 = y * z * (1 - cos(rad)) - x * sin(rad);
    matrix->m24 = 0;
    matrix->m31 = x * z * (1 - cos(rad)) - y * sin(rad);
    matrix->m32 = y * z * (1 - cos(rad)) + x * sin(rad);
    matrix->m33 = z * z * (1 - cos(rad)) + cos(rad);
    matrix->m34 = 0;
    matrix->m41 = 0;
    matrix->m42 = 0;
    matrix->m43 = 0;
    matrix->m44 = 1;
    return (matrix);
}


void    apply_matrix(t_matrix *matrix, t_vect *v)
{
    double x;
    double y;
    double z;

    x = v->x;
    y = v->y;
    z = v->z;
    v->x = matrix->m11 * x + matrix->m12 * y + matrix->m13 * z + matrix->m14;
    v->y = matrix->m21 * x + matrix->m22 * y + matrix->m23 * z + matrix->m24;
    v->z = matrix->m31 * x + matrix->m32 * y + matrix->m33 * z + matrix->m34;
}

编辑2:

在计算法向量的函数中,我将-45和45替换为-45。现在它可以工作......我的z轴一定有问题。似乎正z和负z都是倒置的......

2 个答案:

答案 0 :(得分:1)

OP似乎用二次方程式错误编码 (-1 * b - sqrt(delta)) / 2 * a而不是 (-1 * b - sqrt(delta)) / (2 * a)

建议使用辅助函数,因为在代码中重复使用该等式。

快速,未经测试的代码示例。

#include <assert.h>
#include <math.h>

int quadratic(double a, double b, double c, double x[2]) {
  if (a == 0.0) return 0;
  double d = b*b - 4*a*c;
  if (d < 0.0) return -1;
  d = sqrt(d);
  x[0] = (-b + d) / (2 * a);
  x[1] = (-b - d) / (2 * a);
  return 2;
}

答案 1 :(得分:0)

我找到了答案。函数n_ray_cylinder()是错误的。实际上,它显示一个负角度的圆柱体。我的公式错了。 当我放45度时,它计算-45度。 正确的功能是:

double          n_ray_cylinder(t_ray *ray, t_cylinder *cylinder, t_data *d)
{
    double a;
    double b;
    double c;
    double delta;
    double root;
    double deg;
    deg = M_PI * 45 / 180;

    a = ray->dir->x * ray->dir->x + cos(deg) * cos(deg) * ray->dir->z * ray->dir->z -
            2 * ray->dir->z * cos(deg) * ray->dir->y * sin(deg) + ray->dir->y * ray->dir->y *
            sin(deg) * sin(deg);
    b =  2 * (ray->ori->x - cylinder->base->x) * ray->dir->x + 2 * cos(deg) * cos(deg) * (ray->ori->z - cylinder->base->z) * ray->dir->z -
            2 * (ray->ori->z - cylinder->base->z) * cos(deg) * ray->dir->y * sin(deg) - 2 * ray->dir->z * cos(deg) *
            (ray->ori->y - cylinder->base->y) * sin(deg) + 2 * (ray->ori->y - cylinder->base->y) * ray->dir->y * sin(deg) * sin(deg);
    c = (ray->ori->x - cylinder->base->x) * (ray->ori->x - cylinder->base->x) + (ray->ori->z - cylinder->base->z) * (ray->ori->z - cylinder->base->z)* cos(deg) * cos(deg) -
            2 * (ray->ori->z - cylinder->base->z) * cos(deg) * (ray->ori->y - cylinder->base->y) * sin(deg) + (ray->ori->y - cylinder->base->y) * (ray->ori->y - cylinder->base->y) *
            sin(deg) * sin(deg) - cylinder->radius * cylinder->radius;
    delta = b * b -  (4 * a * c);
    if (delta > ACC)
    {
            root = (-1 * b - sqrt(delta)) / (2 * a) - ACC;
            if (root <= ACC)
                    root = (-1 * b + sqrt(delta)) / (2 * a) - ACC;
            return (root);
    }
    return (-1);
}

一些&#34; 2&#34;成为&#34; -2&#34;。 现在我必须搜索如何在同一个气缸上进行另外两次旋转。 谢谢大家!