所以我对张力流动不熟悉,我的错误就是我正在喂食 对于train_neural_network(x),x的参数无效。
我要做的是进行4999次迭代,输入一个[1,400]数组 图片的位值。所以输入4999张图片。我用它读了图像 scipy.io作为矩阵而不是张量。
我对如何使用占位符以及我的代码通常出现什么问题感到困惑。因为我将x和y输入到占位符,所以输入x到train_neural_network(x)不应该是占位符值吗?
x = tf.placeholder('float',[1,400])
y = tf.placeholder('float',[1,10])
def neural_network_model(data):
hidden_layer1 = {'weights':tf.Variable(tf.random_normal([400,n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal(n_nodes_hl1))}
hidden_layer2 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal(n_nodes_hl2))}
hidden_layer3 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal(n_nodes_hl3))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
#(input * weights) + biases
l1 = tf.add(tf.matmul(data, hidden_layer1['weights']),hidden_layer1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_layer2['weights']),hidden_layer2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_layer3['weights']),hidden_layer3['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3, output_layer['weights']),output_layer['biases'])
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 4999
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
sess.run([optimizer,cost], feed_dict = {x: input_X[epoch], y: encoded_y[epoch]})
print('Epoch',epoch,'completed out of', hm_epochs)
实际错误如下:
%run "/Users/JaeWoo/Desktop/research/tensorpractice/DeepNeural.py"
train_neural_network(x)
W tensorflow/core/framework/op_kernel.cc:940] Invalid argument: shape must be a vector of {int32,int64}, got shape []
W tensorflow/core/framework/op_kernel.cc:940] Invalid argument: shape must be a vector of {int32,int64}, got shape []
... repeated for several times
InvalidArgumentError Traceback (most recent call last)
<ipython-input-86-7c7cbdae9b34> in <module>()
----> 1 train_neural_network(x)
/Users/JaeWoo/Desktop/research/tensorpractice/DeepNeural.py in
train_neural_network(x)
67
68 with tf.Session() as sess:
---> 69 sess.run(tf.initialize_all_variables())
70
71 for epoch in range(hm_epochs):
答案 0 :(得分:0)
我认为错误是你如何定义tf.placeholder。试试这个
x = tf.placeholder(tf.float32,shape=[1,400])
如果你正在处理批次,你可能也想这样定义
x = tf.placeholder(tf.float32,shape=[None,400])