所以我一直在尝试在我正在研究的玩具项目中实现Cook-Torrance着色器模型,当看到正确的角度时看起来相当不错: 但是,当你从一个浅角度看时,视觉效果就会得到明亮的瑕疵和截止点。
截止发生是因为我正在检查是否NdotL&gt; 0,但如果我删除它,事情开始变得更加陌生: 颜色反转,某种线出现在NdotL == 0和NdotH <0的每个片段。 0变黑,变成蛋形。
以下是着色器代码:
#version 330 core
in vec3 Normal;
in vec3 FragPos;
in vec2 TexCoord;
in vec3 camPos;
in vec3 lightDir;
out vec4 color;
uniform sampler2D diffuseTexture;
uniform sampler2D glossTexture;
uniform sampler2D metalTexture;
uniform samplerCube cubemapTexture;
uniform vec3 lightPos;
float F(float ior, vec3 view, vec3 halfV) {
float F0 = abs((1.0 - ior) / (1.0 + ior));
F0 *= F0;
float VoH = dot(view,halfV);
float fresnel = F0+(1-F0) * pow(1 - VoH,5);
return fresnel;
}
float chiGGX(float v) {
return v > 0 ? 1 : 0;
}
float G(vec3 view, vec3 norm, vec3 halfV, float alpha) {
float VoH2 = clamp(dot(view,halfV),0.0,1.0);
float chi = chiGGX( VoH2 / clamp(dot(view,norm),0.0,1.0));
VoH2 = VoH2 * VoH2;
float tan2 = (1-VoH2) / VoH2;
return (chi*2)/(1+sqrt(1+alpha*alpha*tan2));
}
float D(float roughness, vec3 norm, vec3 halfV) {
float NdotH = max(dot(norm, halfV), 0.0);
float r1 = 1.0 / ( 4.0 * roughness * roughness * pow(NdotH, 4.0));
float r2 = (NdotH * NdotH - 1.0) / (roughness * roughness * NdotH * NdotH);
return r1 * exp(r2);
}
void main()
{
float gamma = 2.2f;
float roughnessValue = texture(glossTexture, TexCoord).r;
vec3 lightColor = vec3(1.0f, 0.8f, 1.0f)*4.0;
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(camPos-FragPos);
vec3 halfVector = normalize(lightDir + viewDir);
float diff = max(dot(norm, lightDir), 0.0);
float NdotL = dot(norm, lightDir);
float spec = 0;
if(NdotL > 0.0) {
spec = ( F(1.45, viewDir, halfVector) * G(viewDir,norm,halfVector,roughnessValue) * D(roughnessValue,norm,halfVector)) / (3.14151828 * dot(norm, viewDir) * dot(norm, lightDir));
}
vec3 specular = spec * lightColor;
vec3 ambient = vec3(0.05);
vec3 diffuse = (1 - texture(metalTexture, TexCoord).r) * diff * lightColor + ambient;
vec3 finalcolor = (diffuse * pow(texture(diffuseTexture, TexCoord).rgb, vec3(gamma))) + specular;
color = vec4(finalcolor, 1.0f);
color.rgb = pow(color.rgb, vec3(1.0/gamma));
}
我知道有一些未使用的值,但这是因为着色器尚未完成。
答案 0 :(得分:1)
以下是基于Beckmann分布的Cook-Torrance的独立实现:
layout(location = 0) in PerVertex
{
special3 pos; // tangent to view
vec2 texcoord;
vec4 diffuse;
} IN;
layout(location = 0) out vec4 OUT;
layout(binding = 0) uniform sampler2D u_bump;
layout(binding = 1) uniform sampler2D u_raughness;
struct PerLight
{
vec3 position;
vec3 color;
};
layout(binding = 1) uniform lights_block
{
int nlights;
PerLight lights[4];
} LIGHTS;
float D(float m, float c) {
float c2 = c*c, m2 = m*m, c2m2 = c2*m2;
return exp((c2 - 1)/c2m2)/(3.14159*c2m2*c2);
}
float F(float R0, float NV) { return R0 + (1 - R0)*pow(1 - NV, 5); }
float G(float NL, float NV, float NH, float HV) { return min(1, 2*NH*min(NV, NL)/HV); }
void accumulate_light(special3 tangent, vec3 viewDir, float roughness, PerLight light, inout vec3 diffuse, inout vec3 specular)
{
vec3 lightDir = quat_apply(tangent.q, light.position);
if(lightDir.z > 0)
{
lightDir = normalize(lightDir);
float NL = lightDir.z;
diffuse += NL * light.color;
float NV = viewDir.z;
if(NV > 0)
{
vec3 halfDir = normalize(lightDir + viewDir);
float NH = halfDir.z;
float HV = dot(halfDir, viewDir);
specular += D(roughness, NH)*F(0.034, NV)*G(NL, NV, NH, HV)/(4*NV*NL) * light.color;
}
}
}
void main()
{
special3 tangent = {
vec3(0),
texture(u_bump, IN.texcoord.xy)
};
tangent = special_mul(IN.pos, tangent);
tangent = special_inverse(tangent);
const vec3 viewDir = normalize(tangent.v);
vec3 diffuse = vec3(0.05);
vec3 specular = vec3(0);
float raughness = max(0.215 + texture(u_raughness, IN.texcoord.xy).r - .5, 0.001);
for(int i = 0; i < LIGHTS.nlights; ++i)
accumulate_light(tangent, viewDir, raughness, LIGHTS.lights[i], diffuse, specular);
OUT = vec4(diffuse*IN.diffuse.rgb + specular, IN.diffuse.a);
}
以下是我得到的图片:
在掠过角度,你会看到一个坚硬的截止点,但显然这就是高粗糙度值的原因:
如果我添加凹凸贴图,则效果不再可见:
答案 1 :(得分:1)
我找到了这个暴力截止的原因。我们这三个人在我们各自的独立实现中犯了同样的错误。我们忘记了最终照明公式中的区域投影项:
正确应用它可以修复:
进入这个:
因此,就着色器而言,这意味着:
vec3 specular = spec * lightColor * NdotL;
同样适用于漫反射(环境不适用,因为它来自所有方向,因此单独的漫反射和漫反射环境)
来源: http://www.trentreed.net/blog/physically-based-shading-and-image-based-lighting/