在pandas数据帧中存储复杂字典

时间:2016-09-13 12:04:59

标签: python json pandas dictionary dataframe

这个问题跟我前一个问题有关。这是以前的一个母亲字典 的 store dictionary in pandas dataframe

我有一本字典

  dictionary_example={'New York':{1234:{'choice':0,'city':'New York','choice_set':{0:{'A':100,'B':200,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},
   234:{'choice':1,'city':'New York','choice_set':{0:{'A':100,'B':400},1:{'A':100,'B':300,'C':1000}}},
   1876:{'choice':2,'city':'New York','choice_set':{0:{'A': 100,'B':400,'C':300},1:{'A':100,'B':300,'C':1000},2:{'A':600,'B':200,'C':100}}
  }},
    'London':{1534:{'choice':0,'city':'London','choice_set':{0:{'A':100,'B':400,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},  
   2134:{'choice':1,'city':'London','choice_set':{0:{'A':100,'B':600},1:{'A':170,'B':300,'C':1000}}},
   1776:{'choice':2,'city':'London','choice_set':{0:{'A':100,'B':400,'C':500},1:{'A':100,'B':300},2:{'A':600,'B':200,'C':100}}}},

    'Paris':{1534:{'choice':0,'city':'Paris','choice_set':{0:{'A':100,'B':400,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},
   2134:{'choice':1,'city':'Paris','choice_set':{0:{'A':100,'B':600},1:{'A':170,'B':300,'C':1000}}},
   1776:{'choice':1,'city':'Paris','choice_set':{0:{'A': 100,'B':400,'C':500},1:{'A':100,'B':300}}}
  }}

我希望它成为像这样的熊猫数据框(内部某些特定值可能不完全准确)

id choice  A_0  B_0  C_0  A_1  B_1  C_1  A_2  B_2  C_2 New York London Paris
1234  0     100  200 300  200  300  300  500  300  300    1      0      0
234  1      100  400  -   100  300  1000  -    -    -    1       0      0
1876  2     100  400  300  100  300  1000 600 200 100    1      0       0
1534  0     100  200 300  200  300  300  500  300  300    0      1      0
2134  1      100  400  -   100  300  1000  -    -    -    0       1      0
2006  2     100  400  300  100  300  1000 600 200 100    0      1       0
1264  0     100  200 300  200  300  300  500  300  300    0      0      1
1454  1      100  400  -   100  300  1000  -    -    -    0      0      1
1776  1     100  400  300  100  300     -   -    -    -   0      0       1

在旧的问题中,好人为sub_dictionary提供了一种方法:

df = pd.read_json(json.dumps(dictionary_example)).T


def to_s(r):
    return pd.read_json(json.dumps(r)).unstack()

flattened_choice_set = df["choice_set"].apply(to_s)

flattened_choice_set.columns = ['_'.join((str(col[0]), col[1])) for col in flattened_choice_set.columns] 

result = pd.merge(df, flattened_choice_set, 
         left_index=True, right_index=True).drop("choice_set", axis=1)

大字典有什么办法吗?

一切顺利, 凯文

1 个答案:

答案 0 :(得分:2)

如您所述,之前提供的解决方案并不是非常简洁。这个更易读,并为您当前的问题提供解决方案。如果可能,您应该重新考虑您的数据结构......

df = pd.DataFrame()
question_ids = [0,1,2]

为每个城市选择组合创建一个包含行的数据框,并在选择集列

中添加字典
for _, city_value in dictionary_example.iteritems():
    city_df = pd.DataFrame.from_dict(city_value).T
    city_df = city_df.join(pd.DataFrame(city_df["choice_set"].to_dict()).T)
    df = df.append(city_df)

将选择集中的奇怪列名加入到df

for i in question_ids:
    choice_df = pd.DataFrame(df[i].to_dict()).T
    choice_df.columns = map(lambda x: "{}_{}".format(x,i), choice_df.columns)
    df = df.join(choice_df)

修复城市列

df = pd.get_dummies(df, prefix="", prefix_sep="", columns=['city'])
df.drop(question_ids + ['choice_set'], axis=1, inplace=True)
# Optional to remove NaN from questions:
# df = df.fillna(0)
df