这个问题跟我前一个问题有关。这是以前的一个母亲字典 的 store dictionary in pandas dataframe
我有一本字典
dictionary_example={'New York':{1234:{'choice':0,'city':'New York','choice_set':{0:{'A':100,'B':200,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},
234:{'choice':1,'city':'New York','choice_set':{0:{'A':100,'B':400},1:{'A':100,'B':300,'C':1000}}},
1876:{'choice':2,'city':'New York','choice_set':{0:{'A': 100,'B':400,'C':300},1:{'A':100,'B':300,'C':1000},2:{'A':600,'B':200,'C':100}}
}},
'London':{1534:{'choice':0,'city':'London','choice_set':{0:{'A':100,'B':400,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},
2134:{'choice':1,'city':'London','choice_set':{0:{'A':100,'B':600},1:{'A':170,'B':300,'C':1000}}},
1776:{'choice':2,'city':'London','choice_set':{0:{'A':100,'B':400,'C':500},1:{'A':100,'B':300},2:{'A':600,'B':200,'C':100}}}},
'Paris':{1534:{'choice':0,'city':'Paris','choice_set':{0:{'A':100,'B':400,'C':300},1:{'A':200,'B':300,'C':300},2:{'A':500,'B':300,'C':300}}},
2134:{'choice':1,'city':'Paris','choice_set':{0:{'A':100,'B':600},1:{'A':170,'B':300,'C':1000}}},
1776:{'choice':1,'city':'Paris','choice_set':{0:{'A': 100,'B':400,'C':500},1:{'A':100,'B':300}}}
}}
我希望它成为像这样的熊猫数据框(内部某些特定值可能不完全准确)
id choice A_0 B_0 C_0 A_1 B_1 C_1 A_2 B_2 C_2 New York London Paris
1234 0 100 200 300 200 300 300 500 300 300 1 0 0
234 1 100 400 - 100 300 1000 - - - 1 0 0
1876 2 100 400 300 100 300 1000 600 200 100 1 0 0
1534 0 100 200 300 200 300 300 500 300 300 0 1 0
2134 1 100 400 - 100 300 1000 - - - 0 1 0
2006 2 100 400 300 100 300 1000 600 200 100 0 1 0
1264 0 100 200 300 200 300 300 500 300 300 0 0 1
1454 1 100 400 - 100 300 1000 - - - 0 0 1
1776 1 100 400 300 100 300 - - - - 0 0 1
在旧的问题中,好人为sub_dictionary提供了一种方法:
df = pd.read_json(json.dumps(dictionary_example)).T
def to_s(r):
return pd.read_json(json.dumps(r)).unstack()
flattened_choice_set = df["choice_set"].apply(to_s)
flattened_choice_set.columns = ['_'.join((str(col[0]), col[1])) for col in flattened_choice_set.columns]
result = pd.merge(df, flattened_choice_set,
left_index=True, right_index=True).drop("choice_set", axis=1)
大字典有什么办法吗?
一切顺利, 凯文
答案 0 :(得分:2)
如您所述,之前提供的解决方案并不是非常简洁。这个更易读,并为您当前的问题提供解决方案。如果可能,您应该重新考虑您的数据结构......
df = pd.DataFrame()
question_ids = [0,1,2]
为每个城市选择组合创建一个包含行的数据框,并在选择集列
中添加字典for _, city_value in dictionary_example.iteritems():
city_df = pd.DataFrame.from_dict(city_value).T
city_df = city_df.join(pd.DataFrame(city_df["choice_set"].to_dict()).T)
df = df.append(city_df)
将选择集中的奇怪列名加入到df
for i in question_ids:
choice_df = pd.DataFrame(df[i].to_dict()).T
choice_df.columns = map(lambda x: "{}_{}".format(x,i), choice_df.columns)
df = df.join(choice_df)
修复城市列
df = pd.get_dummies(df, prefix="", prefix_sep="", columns=['city'])
df.drop(question_ids + ['choice_set'], axis=1, inplace=True)
# Optional to remove NaN from questions:
# df = df.fillna(0)
df