你如何计算python中每种类型的平均评分?

时间:2016-09-09 22:40:29

标签: python pandas

我有这个镜头数据帧。它有列来分类电影所属的流派。类型类别是行中具有二进制值的列名称。如果电影属于某种类型,则在适当的列下方为1,否则为0。我想计算python pandas中每个用户的每个类型的平均评分。

# pass in column names for each CSV
u_cols = ['user_id', 'age', 'sex', 'occupation', 'zip_code']
users = pd.read_csv('C:/Users/End-User/Desktop/ml-100k/u.user', 
                    sep='|',names=u_cols, encoding='latin-1')

r_cols = ['user_id', 'movie_id', 'rating', 'unix_timestamp']
ratings = pd.read_csv('C:/Users/End-User/Desktop/ml-100k/u.data', 
                      sep='\t', names=r_cols, encoding='latin-1')

# Reading item file:
m_cols = ['movie_id', 'title' ,'release_date','video_release_date', 'imdb_url',
          'unknown', 'Action', 'Adventure', 'Animation', 'Children\'s', 'Comedy', 
          'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 
          'Musical', 'Mystery', 'Romance', 'Sci-Fi','Thriller', 'War', 'Western']

movies = pd.read_csv('C:/Users/End-User/Desktop/ml-100k/u.item', 
                      sep='|', names=m_cols, encoding='latin-1')

# create one merged DataFrame
movie_ratings = pd.merge(movies, ratings)
lens = pd.merge(movie_ratings, users)

# I have tried this but don't know how to get the average of the ratings for each user.    
df = pd.pivot_table(lens, index = ['user_id'], 
                    columns = ['unknown', 'Action', 'Adventure', 'Animation',
                               'Children\'s', 'Comedy', 'Crime', 'Documentary',
                               'Drama', 'Fantasy', 'Film-Noir', 'Horror', 
                               'Musical', 'Mystery', 'Romance', 'Sci-Fi', 
                               'Thriller', 'War', 'Western'], 
                    values = ['rating'])
print df

1 个答案:

答案 0 :(得分:0)

考虑从宽到长重塑数据框以创建流派列,然后使用其aggfunc参数通过pivot_table()运行结果,特别是numpy mean:

import pandas as pd
import numpy as np

#...same code...

lens = pd.merge(movie_ratings, users)

genrecols = ['unknown', 'Action', 'Adventure', 'Animation',
             'Children\'s', 'Comedy', 'Crime', 'Documentary',
             'Drama', 'Fantasy', 'Film-Noir', 'Horror', 
             'Musical', 'Mystery', 'Romance', 'Sci-Fi', 
             'Thriller', 'War', 'Western']

# RESHAPE DF BY MELTING (WIDE TO LONG), SELECTING ONLY NEEDED FIELDS    
mdf = pd.melt(lens[['user_id', 'sex', 'rating'] + genrecols], 
              id_vars=['user_id', 'sex', 'rating'], var_name='genre')

# FILTER FOR VALUE = 1 AND THREE NEEDED COLUMNS
mdf = mdf[mdf['value']==1][['user_id', 'sex', 'rating', 'genre']]

# RUN PIVOTED AGGREGATION    
df = pd.pivot_table(mdf, columns = ['genre'], index = ['user_id', 'sex'], 
                    values = ['rating'], aggfunc = np.mean)

print df