我是chi平方测试的新手,并试图找出'标准'在两个实验中,运行卡方检验并获得成功率差异的95%置信区间。
我的数据如下:
Condition A: 25 75 100
Condition B: 100 100 200
Total: 125 175
这些数字代表实验过程中观察到的数量。如您所见,条件A与条件B的样本数量不同。
我想得到的是:
似乎scipy.stats.chisquare
期望用户调整预期的'计数,使它们看起来像被观察到的样本大小一样取出'计数。这是我需要做的唯一转变吗?如果没有,我还需要做什么?最后,我将如何计算比例差异的95%置信区间?
答案 0 :(得分:12)
你有contingency table。要对此数据执行χ 2 测试,您可以使用scipy.stats.chi2_contingency
:
In [31]: from scipy.stats import chi2_contingency
In [32]: obs = np.array([[25, 75], [100, 100]])
In [33]: obs
Out[33]:
array([[ 25, 75],
[100, 100]])
In [34]: chi2, p, dof, expected = chi2_contingency(obs)
In [35]: p
Out[35]: 5.9148695289823149e-05
您的列联表是2x2,因此您可以使用Fisher's exact test。这在scipy中实现为scipy.stats.fisher_exact
:
In [148]: from scipy.stats import fisher_exact
In [149]: oddsr, pval = fisher_exact(obs)
In [150]: pval
Out[150]: 3.7175015403965242e-05
对于列联表,scipy没有更多的东西。看起来statsmodels
的下一个版本将有更多的工具来分析列联表,但现在没有用。
编写一些代码来计算比例差异及其95%置信区间并不难。这是一种方式:
# Include this if you are using Python 2.7. Or tweak the code in the
# function to ensure that division uses floating point.
from __future__ import division
def diffprop(obs):
"""
`obs` must be a 2x2 numpy array.
Returns:
delta
The difference in proportions
ci
The Wald 95% confidence interval for delta
corrected_ci
Yates continuity correction for the 95% confidence interval of delta.
"""
n1, n2 = obs.sum(axis=1)
prop1 = obs[0,0] / n1
prop2 = obs[1,0] / n2
delta = prop1 - prop2
# Wald 95% confidence interval for delta
se = np.sqrt(prop1*(1 - prop1)/n1 + prop2*(1 - prop2)/n2)
ci = (delta - 1.96*se, delta + 1.96*se)
# Yates continuity correction for confidence interval of delta
correction = 0.5*(1/n1 + 1/n2)
corrected_ci = (ci[0] - correction, ci[1] + correction)
return delta, ci, corrected_ci
例如,
In [22]: obs
Out[22]:
array([[ 25, 75],
[100, 100]])
In [23]: diffprop(obs)
Out[23]:
(-0.25,
(-0.35956733089748971, -0.14043266910251032),
(-0.36706733089748972, -0.13293266910251031))
返回的第一个值是比例delta
的差异。接下来的两对是delta
的Wald 95%置信区间,以及Yates连续性修正的Wald 95%置信区间。
如果您不喜欢这些负值,可以先反转行:
In [24]: diffprop(obs[::-1])
Out[24]:
(0.25,
(0.14043266910251032, 0.35956733089748971),
(0.13293266910251031, 0.36706733089748972))
为了比较,这里是R中的类似计算:
> obs
[,1] [,2]
[1,] 25 75
[2,] 100 100
> prop.test(obs, correct=FALSE)
2-sample test for equality of proportions without continuity
correction
data: obs
X-squared = 17.1429, df = 1, p-value = 3.467e-05
alternative hypothesis: two.sided
95 percent confidence interval:
-0.3595653 -0.1404347
sample estimates:
prop 1 prop 2
0.25 0.50
> prop.test(obs, correct=TRUE)
2-sample test for equality of proportions with continuity correction
data: obs
X-squared = 16.1297, df = 1, p-value = 5.915e-05
alternative hypothesis: two.sided
95 percent confidence interval:
-0.3670653 -0.1329347
sample estimates:
prop 1 prop 2
0.25 0.50
答案 1 :(得分:1)
我只想将n1 = float(n1)
添加到n2 = float(n2)
和<iframe src="http://www.myAngularProjects" frameborder="0" scrolling="no"></iframe>
。它们应该被转换为浮点数(对于Python 2用户),否则除法将只产生0。