我已经实施了一组定向带通滤波器described in this article。
请参阅名为“ 2.1预处理”的部分的最后一段。
我们选择了12个不重叠的滤镜,分析了12个不同的方向,相互旋转15°。
我遇到以下问题,
过滤器库应该生成12个过滤图像。但是,实际上,我只有03个输出,如下面的快照所示,
源代码:
Here is the complete VS2013 solution as a zipped file.
这是源代码中最相关的部分,
public class KassWitkinFunction
{
/*
* tx = centerX * cos
* ty = centerY * sin
*
* u* = cos . (u + tx) + sin . (v + ty)
* v* = - sin . (u + tx) + cos . (v + ty)
*
*/
//#region MyRegion
public static double tx(int centerX, double theta)
{
double costheta = Math.Cos(theta);
double txx = centerX * costheta;
return txx;
}
public static double ty(int centerY, double theta)
{
double sintheta = Math.Sin(theta);
double tyy = centerY * sintheta;
return tyy;
}
public static double uStar(double u, double v, int centerX, int centerY, double theta)
{
double txx = tx(centerX, theta);
double tyy = ty(centerY, theta);
double sintheta = Math.Sin(theta);
double costheta = Math.Cos(theta);
double cosThetaUTx = costheta * (u + txx);
double sinThetaVTy = sintheta * (v + tyy);
double returns = cosThetaUTx + sinThetaVTy;
return returns;
}
//#endregion
public static double vStar(double u, double v, int centerX, int centerY, double theta)
{
double txx = tx(centerX, theta);
double tyy = ty(centerY, theta);
double sintheta = Math.Sin(theta);
double costheta = Math.Cos(theta);
double sinThetaUTx = (-1) * sintheta * (u + txx);
double cosThetaVTy = costheta * (v + tyy);
double returns = sinThetaUTx + cosThetaVTy;
return returns;
}
public static double ApplyFilterOnOneCoord(double u, double v, double Du, double Dv, int CenterX, int CenterY, double Theta, int N)
{
double uStar = KassWitkinFunction.uStar(u, v, CenterX, CenterY, Theta);
double vStar = KassWitkinFunction.vStar(u, v, CenterX, CenterY, Theta);
double uStarDu = uStar / Du;
double vStarDv = vStar / Dv;
double sqrt = Math.Sqrt(uStarDu + vStarDv);
double _2n = 2 * N;
double pow = Math.Pow(sqrt, _2n);
double div = 1 + 0.414 * pow;
double returns = 1/div;
return returns;
}
}
public class KassWitkinKernel
{
public readonly int N = 4;
public int Width { get; set; }
public int Height { get; set; }
public double[,] Kernel { get; private set; }
public double[,] PaddedKernel { get; private set; }
public double Du { get; set; }
public double Dv { get; set; }
public int CenterX { get; set; }
public int CenterY { get; set; }
public double ThetaInRadian { get; set; }
public void SetKernel(double[,] value)
{
Kernel = value;
Width = Kernel.GetLength(0);
Height = Kernel.GetLength(1);
}
public void Pad(int newWidth, int newHeight)
{
double[,] temp = (double[,])Kernel.Clone();
PaddedKernel = ImagePadder.Pad(temp, newWidth, newHeight);
}
public Bitmap ToBitmap()
{
return ImageDataConverter.ToBitmap(Kernel);
}
public Bitmap ToBitmapPadded()
{
return ImageDataConverter.ToBitmap(PaddedKernel);
}
public Complex[,] ToComplex()
{
return ImageDataConverter.ToComplex(Kernel);
}
public Complex[,] ToComplexPadded()
{
return ImageDataConverter.ToComplex(PaddedKernel);
}
public void Compute()
{
Kernel = new double[Width, Height];
for (int i = 0; i < Width; i++)
{
for (int j = 0; j < Height; j++)
{
Kernel[i, j] = (double)KassWitkinFunction.ApplyFilterOnOneCoord(i, j,
Du,
Dv,
CenterX,
CenterY,
ThetaInRadian,
N);
//Data[i, j] = r.NextDouble();
}
}
string str = string.Empty;
}
}
public class KassWitkinBandpassFilter
{
public Bitmap Apply(Bitmap image, KassWitkinKernel kernel)
{
Complex[,] cImagePadded = ImageDataConverter.ToComplex(image);
Complex[,] cKernelPadded = kernel.ToComplexPadded();
Complex[,] convolved = Convolution.Convolve(cImagePadded, cKernelPadded);
return ImageDataConverter.ToBitmap(convolved);
}
}
public class KassWitkinFilterBank
{
private List<KassWitkinKernel> Kernels;
public int NoOfFilters { get; set; }
public double FilterAngle { get; set; }
public int WidthWithPadding { get; set; }
public int HeightWithPadding { get; set; }
public int KernelDimension { get; set; }
public KassWitkinFilterBank()
{}
public List<Bitmap> Apply(Bitmap bitmap)
{
Kernels = new List<KassWitkinKernel>();
double degrees = FilterAngle;
KassWitkinKernel kernel;
for (int i = 0; i < NoOfFilters; i++)
{
kernel = new KassWitkinKernel();
kernel.Width = KernelDimension;
kernel.Height = KernelDimension;
kernel.CenterX = (kernel.Width) / 2;
kernel.CenterY = (kernel.Height) / 2;
kernel.Du = 2;
kernel.Dv = 2;
kernel.ThetaInRadian = Tools.DegreeToRadian(degrees);
kernel.Compute();
kernel.Pad(WidthWithPadding, HeightWithPadding);
Kernels.Add(kernel);
degrees += degrees;
}
List<Bitmap> list = new List<Bitmap>();
foreach (KassWitkinKernel k in Kernels)
{
Bitmap image = (Bitmap)bitmap.Clone();
Complex[,] cImagePadded = ImageDataConverter.ToComplex(image);
Complex[,] cKernelPadded = k.ToComplexPadded();
Complex[,] convolved = Convolution.Convolve(cImagePadded, cKernelPadded);
Bitmap temp = ImageDataConverter.ToBitmap(convolved);
list.Add(temp);
}
return list;
}
}
答案 0 :(得分:2)
正如我之前在评论中指出的那样,大多数过滤器输出都是空白的,因为它们包含NaN
s。这些都是由
方程(1)和(2)的实现
your reference article。
与原作者取得联系可能最有可能复制原始结果,但至少可以确保不生成NaN
:
double arg = uStarDu + vStarDv;
double div = 1 + 0.414 * Math.Pow(Math.Abs(arg), N);
另一方面,考虑到等式的一般形式是Butterworth filter的重新组合 (连同带通滤波的提及), 并且看似不必要的平方根然后取幂(这表明错过了明显的简化,或者更可能在我看来是错误的 在渲染等式时,我建议改为使用以下等式:
public static double uStar(double u, double v, int centerX, int centerY, double theta)
{
double sintheta = Math.Sin(theta);
double costheta = Math.Cos(theta);
return costheta * (u - centerX) + sintheta * (v - centerY);
}
public static double vStar(double u, double v, int centerX, int centerY, double theta)
{
double sintheta = Math.Sin(theta);
double costheta = Math.Cos(theta);
return (-1) * sintheta * (u - centerX) + costheta * (v - centerY);
}
public static double ApplyFilterOnOneCoord(double u, double v, double Du, double Dv, int CenterX, int CenterY, double Theta, int N)
{
double uStarDu = KassWitkinFunction.uStar(u, v, CenterX, CenterY, Theta) / Du;
double vStarDv = KassWitkinFunction.vStar(u, v, CenterX, CenterY, Theta) / Dv;
double arg = uStarDu + vStarDv;
double div = Math.Sqrt(1 + Math.Pow(arg, 2*N));;
return 1/div;
}
现在你必须意识到这些方程是针对频域中的滤波器表示而给出的,而你的Convolution.Convolve
期望滤波器内核在空间域中提供(尽管计算的核心是在频域中完成的)。
应用这些过滤器(并且仍在空间域中获得正确的填充)的最简单方法是:
这可以通过KassWitkinKernel.Pad
的以下修改版本来实现:
private Complex[,] cPaddedKernel;
public void Pad(int unpaddedWidth, int unpaddedHeight, int newWidth, int newHeight)
{
Complex[,] unpaddedKernelFrequencyDomain = ImageDataConverter.ToComplex((double[,])Kernel.Clone());
FourierTransform ftInverse = new FourierTransform();
ftInverse.InverseFFT(FourierShifter.RemoveFFTShift(unpaddedKernelFrequencyDomain));
Complex[,] cKernel = FourierShifter.FFTShift(ftInverse.GrayscaleImageComplex);
int startPointX = (int)Math.Ceiling((double)(newWidth - unpaddedWidth) / (double)2) - 1;
int startPointY = (int)Math.Ceiling((double)(newHeight - unpaddedHeight) / (double)2) - 1;
for (int j = 0; j < newHeight; j++)
{
for (int i=0; i<startPointX; i++)
{
cKernel[i, j] = 0;
}
for (int i = startPointX + unpaddedWidth; i < newWidth; i++)
{
cKernel[i, j] = 0;
}
}
for (int i = startPointX; i < startPointX + unpaddedWidth; i++)
{
for (int j = 0; j < startPointY; j++)
{
cKernel[i, j] = 0;
}
for (int j = startPointY + unpaddedHeight; j < newHeight; j++)
{
cKernel[i, j] = 0;
}
}
FourierTransform ftForward = new FourierTransform(cKernel); ftForward.ForwardFFT();
cPaddedKernel = ftForward.FourierImageComplex;
}
public Complex[,] ToComplexPadded()
{
return cPaddedKernel;
}
在计算卷积时,您将在卷积中跳过内核的FFT。 请注意,您可以类似地避免为滤波器组中的每个滤波器重新计算图像的FFT。 如果预先计算图像的FFT,则需要进行卷积所需的其余计算 减少到频域乘法和最终的逆变换:
public partial class Convolution
{
public static Complex[,] ConvolveInFrequencyDomain(Complex[,] fftImage, Complex[,] fftKernel)
{
Complex[,] convolve = null;
int imageWidth = fftImage.GetLength(0);
int imageHeight = fftImage.GetLength(1);
int maskWidth = fftKernel.GetLength(0);
int maskHeight = fftKernel.GetLength(1);
if (imageWidth == maskWidth && imageHeight == maskHeight)
{
Complex[,] fftConvolved = new Complex[imageWidth, imageHeight];
for (int j = 0; j < imageHeight; j++)
{
for (int i = 0; i < imageWidth; i++)
{
fftConvolved[i, j] = fftImage[i, j] * fftKernel[i, j];
}
}
FourierTransform ftForConv = new FourierTransform();
ftForConv.InverseFFT(fftConvolved);
convolve = FourierShifter.FFTShift(ftForConv.GrayscaleImageComplex);
Rescale(convolve);
}
else
{
throw new Exception("padding needed");
}
return convolve;
}
}
将在KassWitkinFilterBank.Apply
中使用以下内容:
Bitmap image = (Bitmap)bitmap.Clone();
Complex[,] cImagePadded = ImageDataConverter.ToComplex(image);
FourierTransform ftForImage = new FourierTransform(cImagePadded); ftForImage.ForwardFFT();
Complex[,] fftImage = ftForImage.FourierImageComplex;
foreach (KassWitkinKernel k in Kernels)
{
Complex[,] cKernelPadded = k.ToComplexPadded();
Complex[,] convolved = Convolution.ConvolveInFrequencyDomain(fftImage, cKernelPadded);
Bitmap temp = ImageDataConverter.ToBitmap(convolved);
list.Add(temp);
}
这样可以让你超越问题中指出的凹凸。 当然,如果打算重现论文的结果,你还有其他障碍可以克服。 第一个是实际使用锐化图像作为滤波器组的输入。 执行此操作时,您可能需要先平滑图像边缘以避免产生强边缘 在图像周围,这会扭曲线检测算法的结果。
答案 1 :(得分:1)
问题在于:
public static double ApplyFilterOnOneCoord(double u, double v, double Du, double Dv, int CenterX, int CenterY, double Theta, int N)
{
double uStar = KassWitkinFunction.uStar(u, v, CenterX, CenterY, Theta);
double vStar = KassWitkinFunction.vStar(u, v, CenterX, CenterY, Theta);
double uStarDu = uStar / Du;
double vStarDv = vStar / Dv;
double sqrt = Math.Sqrt(uStarDu + vStarDv);
double _2n = 2 * N;
double pow = Math.Pow(sqrt, _2n);
if (!double.IsNaN(sqrt) && Math.Abs(pow - Math.Pow(uStarDu + vStarDv, N)) > 1e-7)
{
//execution will never reach here!!
}
pow = Math.Pow(uStarDu + vStarDv, N);
double div = 1 + 0.414 * pow;
double returns = 1 / div;
return returns;
}
我不明白为什么在计算Math.Pow之前我们应该采用平方根,特别是当我们知道幂是偶数时。它唯一能做的事情(除了使代码更复杂和更慢)是为负值生成NaN。
我不确定整个计算是否正确,但现在所有12个过滤后的图像都出现了!
这用于预处理,据称来自Kass和Within的论文。我试着阅读原始论文,但质量非常低,难以阅读。您是否碰巧有更好质量的[15]参考扫描链接?